The end‐Cretaceous mass extinction allowed placental mammals to diversify ecologically and taxonomically as they filled ecological niches once occupied by non‐avian dinosaurs and more basal mammals. Little is known, however, about how the neurosensory systems of mammals changed after the extinction, and what role these systems played in mammalian diversification. We here use high‐resolution computed tomography (CT ) scanning to describe the endocranial and inner ear endocasts of two species, Chriacus pelvidens and Chriacus baldwini , which belong to a cluster of ‘archaic’ placental mammals called ‘arctocyonid condylarths’ that thrived during the ca . 10 million years after the extinction (the Paleocene Epoch), but whose relationships to extant placentals are poorly understood. The endocasts provide new insight into the paleobiology of the long‐mysterious ‘arctocyonids’, and suggest that Chriacus was an animal with an encephalization quotient (EQ) range of 0.12–0.41, which probably relied more on its sense of smell than vision, because the olfactory bulbs are proportionally large but the neocortex and petrosal lobules are less developed. Agility scores, estimated from the dimensions of the semicircular canals of the inner ear, indicate that Chriacus was slow to moderately agile, and its hearing capabilities, estimated from cochlear dimensions, suggest similarities with the extant aardvark. Chriacus shares many brain features with other Paleocene mammals, such as a small lissencephalic brain, large olfactory bulbs and small petrosal lobules, which are likely plesiomorphic for Placentalia. The inner ear of Chriacus also shares derived characteristics of the elliptical and spherical recesses with extinct species that belong to Euungulata, the extant placental group that includes artiodactyls and perissodactyls. This lends key evidence to the hypothesized close relationship between Chriacus and the extant ungulate groups, and demonstrates that neurosensory features can provide important insight into both the paleobiology and relationships of early placental mammals.
more »
« less
Cranial and endocranial anatomy of a three‐dimensionally preserved teleosauroid thalattosuchian skull
Thalattosuchians represent one of the several independent transitions into the marine realm among crocodylomorphs. The extent of their aquatic adaptations ranges from the semiaquatic teleosauroids, superficially resembling extant gharials, to the almost cetacean-like pelagic metriorhynchids. Understanding the suite of osteological, physiological, and sensory changes that accompanied this major transition has received increased attention, but is somewhat hindered by a dearth of complete three-dimensionally preserved crania. Here, we describe the cranial and endocranial anatomy of a well-preserved three-dimensional specimen of Macrospondylus bollensis from the Toarcian of Yorkshire, UK. The trigeminal fossa contains two similar-sized openings separated by a thin lamina of prootic, a configuration that appears unique to a subset of teleosauroids. Macrospondylus bollensis resembles other thalattosuchians in having pyramidal semicircular canals with elongate cochlear ducts, enlarged carotid canals leading to an enlarged pituitary fossa, enlarged orbital arteries, enlarged endocranial venous sinuses, reduced pharyngotympanic sinuses, and a relatively straight brain with a hemispherical cerebral expansion. We describe for the first time the olfactory region and paranasal sinuses of a teleosauroid. A relatively large olfactory region suggests greater capacity for airborne olfaction in teleosauroids than in the more aquatically adapted metriorhynchoids. Additionally, slight swellings in the olfactory region suggest the presence of small salt glands of lower secretory capacity than those of metriorhynchoids. The presence of osteological correlates for salt glands in a teleosauroid corroborates previous hypotheses that these glands originated in the common ancestor of Thalattosuchia, facilitating their rapid radiation into the marine realm.
more »
« less
- Award ID(s):
- 1754659
- PAR ID:
- 10351099
- Date Published:
- Journal Name:
- The Anatomical Record
- ISSN:
- 1932-8486
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Cranial skeletal material of the Eocene palaeanodont Metacheiromys marshi was examined using high-resolution CT scans. The present study represents the first time that CT scans have been conducted on skulls of this extinct fossorial mammal. The bony osteology of the auditory region is described in detail, including the ectotympanic and entotympanic, the petrosal in both tympanic and endocranial views, and the middle ear ossicles. The results of this investigation confirm a number of derived resemblances between palaeanodonts and xenarthrans, including a large entotympanic element in the medial wall of the auditory bulla, the presence of an anteroventral process of the tegmen tympani, and a posttemporal canal. However, the present study also provides novel derived auditory features linking palaeanodonts and pangolins, consistent with current understanding of palaeanodont phylogenetic relationships, including the absence of an ectotympanic styliform process, a posterolaterally oriented aperture to the cochlear fossula, and a convex mallear head / concave incudal head. Several autapomorphic features characterizing the auditory osteology of Metacheiromys are also noted. The presence of a large, spherical mallear head, and of a capacious tympanic cavity extended into sinuses in surrounding bones, likely represent adaptations for fossoriality, consistent with palaeobiological inferences drawn from the postcranial anatomy of Metacheiromys .more » « less
-
Eopneumatosuchus colberti Crompton and Smith, 1980, known from a single partial skull, is an enigmatic crocodylomorph from the Lower Jurassic Kayenta Formation. In spite of its unique morphology, an exceptionally pneumatic braincase, and presence during a critical time period of crocodylomorph evolu- tion, relatively little is known about this taxon. Here, we redescribe the external cranial morphology of E. colberti, present novel information on its endocranial anatomy, evaluate its phylogenetic position among early crocodylomorphs, and seek to better characterize its ecology. Our examination clarifies key aspects of cranial suture paths and braincase anatomy. Comparisons with related taxa (e.g., Protosuchus haughtoni) demonstrate that extreme pneumaticity of the braincase may be more widespread in protosuchids than previously appreci- ated. Computed tomography scans reveal an endocranial morphology that resembles that of other early crocodylomorphs, in particular the non- crocodyliform crocodylomorph Almadasuchus figarii. There are, however, key differences in olfactory bulb and cerebral hemisphere morphology, which dem- onstrate the endocranium of crocodylomorphs is not as conserved as previously hypothesized. Our phylogenetic analysis recovers E. colberti as a close relative of Protosuchus richardsoni and Edentosuchus tienshanensis, contrasting with previous hypotheses of a sister group relationship with Thalattosuchia. Previ- ous work suggested the inner ear has some similarities to semi-aquatic crocodyliforms, but the phylogenetic placement of E. colberti among proto- suchids with a terrestrial postcranial skeletal morphology complicates paleo- ecological interpretation.more » « less
-
Diffusible iodine-based contrast-enhanced computed tomography (diceCT) has emerged as a viable tool for discriminating soft tissues in serial CT slices, which can then be used for three-dimensional analysis. This technique has some potential to supplant histology as a tool for identification of body tissues. Here, we studied the head of an adult fruit bat ( Cynopterus sphinx ) and a late fetal vampire bat ( Desmodus rotundus ) using diceCT and µCT. Subsequently, we decalcified, serially sectioned and stained the same heads. The two CT volumes were rotated so that the sectional plane of the slice series closely matched that of histological sections, yielding the ideal opportunity to relate CT observations to corresponding histology. Olfactory epithelium is typically thicker, on average, than respiratory epithelium in both bats. Thus, one investigator (SK), blind to the histological sections, examined the diceCT slice series for both bats and annotated changes in thickness of epithelium on the first ethmoturbinal (ET I), the roof of the nasal fossa, and the nasal septum. A second trial was conducted with an added criterion: radioopacity of the lamina propria as an indicator of Bowman’s glands. Then, a second investigator (TS) annotated images of matching histological sections based on microscopic observation of epithelial type, and transferred these annotations to matching CT slices. Measurements of slices annotated according to changes in epithelial thickness alone closely track measurements of slices based on histologically-informed annotations; matching histological sections confirm blind annotations were effective based on epithelial thickness alone, except for a patch of unusually thick non-OE, mistaken for OE in one of the specimens. When characteristics of the lamina propria were added in the second trial, the blind annotations excluded the thick non-OE. Moreover, in the fetal bat the use of evidence for Bowman’s glands improved detection of olfactory mucosa, perhaps because the epithelium itself was thin enough at its margins to escape detection. We conclude that diceCT can by itself be highly effective in identifying distribution of OE, especially where observations are confirmed by histology from at least one specimen of the species. Our findings also establish that iodine staining, followed by stain removal, does not interfere with subsequent histological staining of the same specimen.more » « less
-
Osteoglossid bonytongues (arapaimas, arowanas, and relatives) are extant tropical freshwater fishes with a relatively abundant and diverse fossil record. Most osteoglossid fossils come from a 25-million-year interval in the early Palaeogene, when these fishes were distributed worldwide in both freshwater and marine environments. Despite their biogeographic and palaeoecological relevance, and a relative abundance of well-preserved material, the evolutionary relationships between these Palaeogene forms and extant bonytongues remain unclear. Here we describe a new genus of bonytongue from early Eocene marine deposits of Morocco, represented by an articulated, three-dimensionally preserved skull with associated pectoral girdle. This taxon is characterized by an elongated snout, contrasting with the short jaws usually found in marine representatives of the clade. A revision of morphological characters in bonytongues allows us to place this new genus, together with other marine and freshwater Eocene taxa, within crown osteoglossids and closely related to extant arapaimines. The discovery of the new Moroccan taxon hints at a previously underestimated eco-morphological diversity of marine bonytongues, highlighting the diverse trophic niches that these fishes occupied in early Palaeogene seas.more » « less
An official website of the United States government

