skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Skeletal Anatomy of the Basicranium and Auditory Region in the Metacheiromyid Palaeanodont Metacheiromys (Mammalia, Pholidotamorpha) Based on High-Resolution CT Scans
Abstract Cranial skeletal material of the Eocene palaeanodont Metacheiromys marshi was examined using high-resolution CT scans. The present study represents the first time that CT scans have been conducted on skulls of this extinct fossorial mammal. The bony osteology of the auditory region is described in detail, including the ectotympanic and entotympanic, the petrosal in both tympanic and endocranial views, and the middle ear ossicles. The results of this investigation confirm a number of derived resemblances between palaeanodonts and xenarthrans, including a large entotympanic element in the medial wall of the auditory bulla, the presence of an anteroventral process of the tegmen tympani, and a posttemporal canal. However, the present study also provides novel derived auditory features linking palaeanodonts and pangolins, consistent with current understanding of palaeanodont phylogenetic relationships, including the absence of an ectotympanic styliform process, a posterolaterally oriented aperture to the cochlear fossula, and a convex mallear head / concave incudal head. Several autapomorphic features characterizing the auditory osteology of Metacheiromys are also noted. The presence of a large, spherical mallear head, and of a capacious tympanic cavity extended into sinuses in surrounding bones, likely represent adaptations for fossoriality, consistent with palaeobiological inferences drawn from the postcranial anatomy of Metacheiromys .  more » « less
Award ID(s):
1655795
PAR ID:
10179193
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Fossil Imprint
Volume:
75
Issue:
3-4
ISSN:
2533-4069
Page Range / eLocation ID:
484 to 503
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The anatomy of the petrosal and associated middle ear structures are described and illustrated for the brown rat, Rattus norvegicus (Berkenhout, 1769). Although the middle ear in this iconic mammal has been treated by prior authors, there has not been a comprehensive, well-illustrated contribution using current anatomical terminology. Descriptions are based on specimens from the osteological collections of the Section of Mammals, Carnegie Museum of Natural History, and a CT scanned osteological specimen from the Texas Memorial Museum. The petrosal, ectotympanic, malleus, incus, stapes, and inner ear were segmented from the CT scans. The petrosal of the brown rat is only loosely attached to the cranium, primarily along its posterior border; it is separated from the basisphenoid, alisphenoid, and squamosal by a large piriform fenestra that transmits various neurovascular structures including the postglenoid vein. The extent of the piriform fenestra broadly exposes the tegmen tympani of the petrosal in lateral view. The floor of the middle ear is formed by the expanded ectotympanic bulla, which is tightly held to the petrosal with five points of contact. The surfaces of the petrosal affording contact with the ectotympanic bulla are the rostral tympanic process, the epitympanic wing, the tegmen tympani, two of the three parts of the caudal tympanic process, and the tympanohyal, with the ectotympanic fused to the last. The ectotympanic in turn is fused to the elongate rostral process of the malleus, which is only discoverable through the study of juvenile specimens. In addition to osteology, the major nerves, arteries, and veins of the petrosal are described and illustrated based on the literature and osteological correlates. The petrosal of the brown rat is compared with those of several Eocene rodents to put the extant form in the context of early members of the rodent lineage. Comparisons benefitted from CT scans of the middle Eocene ischromyoid Paramys delicatus Leidy, 1871, from the western United States, affording the first description of the endocranial surface of the petrosal in an Eocene rodent. The petrosals in the Eocene fossils are more tightly held in the cranium, but the ectotympanic contacts the petrosal through the same five points, with some modifications. The most unexpected discovery in Paramys delicatus was the presence of a prominent tentorial process of the parietal in contact with the reduced crista petrosa. 
    more » « less
  2. ABSTRACT The study of primate auditory morphology is a significant area of interest for comparative anatomists, given the phylogenetic relationships that link primate hearing and the morphology of these auditory structures. Extensive literature addresses the form‐to‐function relationship of the auditory system (outer, middle, and inner ear) in primates and, by extension, provides insight into the auditory system of extinct primates and even modern humans. We add to this literature by describing the ontogenetic trajectory of the middle ear cavity and ossicular chain (malleus, incus, and stapes) due to their critical role in relaying auditory stimuli for interpretation. We examined middle ear morphology in neonatal primates and adult primates using a taxonomically broad sample. We focused primarily on nocturnal primate taxa (Daubentonia,Loris,Galago,Aotus, andTarsier), which are underrepresented in the literature. However, we also included three diurnal taxa (Macaca,Lemur, andSaguinus). Using 3D Slicer, we visualized middle ear structures in three dimensions using conventional micro CT data informed by diffusible iodine‐based contrast‐enhanced CT (diceCT) data. We illustrated how spatial relationships between otic elements, such as the various epitympanic sinuses of the middle ear and the auditory ossicles, vary throughout ontogeny. Our major findings include that the central tympanic cavity scaled with negative allometry in all taxa and that the accessory cavities scaled with isometry or positive allometry in most taxa. Despite these changes in chamber size, the size of the ear ossicles remained relatively consistent through ontogeny in most taxa. We confirmed our expectation that anthropoids exhibit an increase in the complexity of accessory cavities throughout ontogeny, mirroring the exponential pneumatization of the face in anthropoids. These findings provide an ontogenetic perspective and reveal further functional complexities of the middle ear as a conduit for sound proliferation and as a pressure regulator. 
    more » « less
  3. Abstract The physical characteristics of an animal's head and pinna mark the beginning of auditory communication. Auditory communication is broadly achieved by receiving sounds from the environment and plays a vital role in an animal's ability to perceive and localize sounds. Natural history museums and collections, along with their vast repositories of specimens, provide a unique resource for examining how the variability in both the size and shape of the head and pinna causes variability in the detection of acoustic signals across species. Using this approach, we measured morphological features of the head and pinna on over 1200 preserved specimens ofPeromyscus boylii,P. californicus,P. gossypinus,P. leucopus,P. maniculatus, andP. truei, followed by a series of head‐related transfer functions (HRTFs) on several individuals to study the relationship between morphology and available auditory information. Our morphological results show significant variation in pinna length and width, as well as in the distance between the two ears across the six species. Interaural time differences and interaural level differences were calculated and demonstrated consistent results across species, suggesting the differences in head and pinna size do not significantly modify these cues. Not only does this study contribute to existing research on external morphology and auditory function, but it also provides valuable insight into the use of preserved zoological specimens in auditory research, an area that is currently understudied. 
    more » « less
  4. Abstract We describe the tympanic anatomy of the petrosal of Deltatherium fundaminis, an enigmatic Paleocene mammal based on cranial specimens recovered from New Mexico, U.S.A. Although the ear region of Deltatherium has previously been described, there has not been a comprehensive, well-illustrated contribution using current anatomical terminology. The dental and cranial anatomy of Deltatherium is a chimera, with morphological similarities to both ‘condylarth’ and ‘cimolestan’ taxa. As such, the phylogenetic relationships of this taxon have remained elusive since its discovery, and it has variably been associated with Arctocyonidae, Pantodonta and Tillodontia. The petrosal of Deltatherium is anteriorly bordered by an open space comprising a contiguous carotid opening and pyriform fenestra. The promontorium features both a small rostral tympanic process and small epitympanic wing but lacks well-marked sulci. A large ventral facing external aperture of the canaliculus cochleae is present and bordered posteriorly by a well-developed caudal tympanic process. The hiatus Fallopii opens on the ventral surface of the petrosal. The tegmen tympani is mediolaterally broad and anteriorly expanded, and its anterior margin is perforated by a foramen for the ramus superior of the stapedial artery. The tympanohyal is small but approximates the caudal tympanic process to nearly enclose the stylomastoid notch. The mastoid is widely exposed on the basicranium and bears an enlarged mastoid process, separate from the paraoccipital process. These new observations provide novel anatomical data corroborating previous hypotheses regarding the plesiomorphic eutherian condition but also reveal subtle differences among Paleocene eutherians that have the potential to help inform the phylogeny of Deltatherium. 
    more » « less
  5. The raoellid artiodactyl Indohyus indirae is known from northern Pakistan and northwestern India, with substantial skeletal material found in the Sindkhatudi locality near Kalakot in Kashmir. Eight specimens from this locality, two of which exhibit deciduous dentitions, offer invaluable insights into cranial osteology of Indohyus indirae. We present a comprehensive examination of the cranial osteology of Indohyus, highlighting detailed unique features using this material. These specimens, though flattened dorsoventrally and mediolaterally, allow for anatomical observations. Previous literature has extensively employed these specimens for phylogenetic analyses indicating that Indohyus is a close relative of cetaceans. These findings are partly based on the material described here. Notably, the cranial morphology of Indohyus differs in several aspects from that of most early and middle Eocene artiodactyls. For instance, the rostrum of Indohyus is longer than that of most middle Eocene artiodactyls, resembling Eocene cetaceans. The positioning of the nasal opening above the incisors is similar to terrestrial artiodactyls. However, the ventral wall of the nasopharyngeal duct does not extend to the ear region, which distinguishes it from Eocene cetaceans. Moreover, the frontal bone is thick and has a concave profile, forming a dorsal shield for the laterally facing orbits. Furthermore, the tympanic bone has an involucrum, a feature that characterizes all cetaceans. These cranial features may be indicative of specific cranial functions and, given their similarity in some regards to Eocene cetaceans, could be related to the land-to-water transition. Further research, including explicit functional studies, is required to investigate these hypotheses. 
    more » « less