Title: One-Way Functions and a Conditional Variant of MKTP
One-way functions (OWFs) are central objects of study in cryptography and computational complexity theory. In a seminal work, Liu and Pass (FOCS 2020) proved that the average-case hardness of computing time-bounded Kolmogorov complexity is equivalent to the existence of OWFs. It remained an open problem to establish such an equivalence for the average-case hardness of some natural NP-complete problem. In this paper, we make progress on this question by studying a conditional variant of the Minimum KT-complexity Problem (MKTP), which we call McKTP, as follows. 1) First, we prove that if McKTP is average-case hard on a polynomial fraction of its instances, then there exist OWFs. 2) Then, we observe that McKTP is NP-complete under polynomial-time randomized reductions. 3) Finally, we prove that the existence of OWFs implies the nontrivial average-case hardness of McKTP. Thus the existence of OWFs is inextricably linked to the average-case hardness of this NP-complete problem. In fact, building on recently-announced results of Ren and Santhanam [Rahul Ilango et al., 2021], we show that McKTP is hard-on-average if and only if there are logspace-computable OWFs. more »« less
Pass, R.; Venkitasubramaniam, M.
(, ACM SIGACT News)
null
(Ed.)
We review a study of average-case complexity through the lens of interactive puzzles- interactive games between a computationally bounded Challenger and computationally-bounded Solver/Attacker. Most notably, we use this treatment to review a recent result showing that if NP is hard-on-the-average, then there exists a sampleable distribution over only true statements of an NP language, for which no probabilistic polynomial time algorithm can find witnesses. We also discuss connections to the problem of whether average-case hardness in NP implies averagecase hardness in TFNP, or the existence of cryptographic one-way functions.
A fundamental pursuit in complexity theory concerns reducing worst-case problems to average-case problems. There exist complexity classes such as PSPACE that admit worst-case to average-case reductions. However, for many other classes such as NP, the evidence so far is typically negative, in the sense that the existence of such reductions would cause collapses of the polynomial hierarchy(PH). Basing cryptographic primitives, e.g., the average-case hardness of inverting one-way permutations, on NP-completeness is a particularly intriguing instance. As there is evidence showing that classical reductions from NP-hard problems to breaking these primitives result in PH collapses, it seems unlikely to base cryptographic primitives on NP-hard problems. Nevertheless, these results do not rule out the possibilities of the existence of quantum reductions. In this work, we initiate a study of the quantum analogues of these questions. Aside from formalizing basic notions of quantum reductions and demonstrating powers of quantum reductions by examples of separations, our main result shows that if NP-complete problems reduce to inverting one-way permutations using certain types of quantum reductions, then coNP ⊆ QIP ( 2 ) .
Bezakova, Ivona; Blanca, Antonio; Chen, Zongchen; Stefankovic, Daniel; Vigoda, Eric
(, Proceedings of Machine Learning Research)
We study the identity testing problem in the context of spin systems or undirected graphical models, where it takes the following form: given the parameter specification of the model M and a sampling oracle for the distribution \mu_{M^*} of an unknown model M^*, can we efficiently determine if the two models M and M^* are the same? We consider identity testing for both soft-constraint and hard-constraint systems. In particular, we prove hardness results in two prototypical cases, the Ising model and proper colorings, and explore whether identity testing is any easier than structure learning. For the ferromagnetic (attractive) Ising model, Daskalasis et al. (2018) presented a polynomial time algorithm for identity testing. We prove hardness results in the antiferromagnetic (repulsive) setting in the same regime of parameters where structure learning is known to require a super-polynomial number of samples. In particular, for n-vertex graphs of maximum degree d, we prove that if |\beta| d = \omega(\log n) (where \beta is the inverse temperature parameter), then there is no identity testing algorithm for the antiferromagnetic Ising model that runs in polynomial time unless RP = NP. We also establish computational lower bounds for a broader set of parameters under the (randomized) exponential time hypothesis. In our proofs, we use random graphs as gadgets; this is inspired by similar constructions in seminal works on the hardness of approximate counting. In the hard-constraint setting, we present hardness results for identity testing for proper colorings. Our results are based on the presumed hardness of #BIS, the problem of (approximately) counting independent sets in bipartite graphs. In particular, we prove that identity testing for colorings is hard in the same range of parameters where structure learning is known to be hard, which in turn matches the parameter regime for NP-hardness of the corresponding decision problem.
LaVigne, R.; Lincoln, A.; Vassilevska Williams, V.
(, Advances in Cryptology {\textendash} {CRYPTO} 2019)
Cryptography is largely based on unproven assumptions, which, while believable, might fail. Notably if P=NP, or if we live in Pessiland, then all current cryptographic assumptions will be broken. A compelling question is if any interesting cryptography might exist in Pessiland. A natural approach to tackle this question is to base cryptography on an assumption from fine-grained complexity. Ball, Rosen, Sabin, and Vasudevan [BRSV’17] attempted this, starting from popular hardness assumptions, such as the Orthogonal Vectors (OV) Conjecture. They obtained problems that are hard on average, assuming that OV and other problems are hard in the worst case. They obtained proofs of work, and hoped to use their average-case hard problems to build a fine-grained one-way function. Unfortunately, they proved that constructing one using their approach would violate a popular hardness hypothesis. This motivates the search for other fine-grained average-case hard problems. The main goal of this paper is to identify sufficient properties for a fine-grained average-case assumption that imply cryptographic primitives such as fine-grained public key cryptography (PKC). Our main contribution is a novel construction of a cryptographic key exchange, together with the definition of a small number of relatively weak structural properties, such that if a computational problem satisfies them, our key exchange has provable fine-grained security guarantees, based on the hardness of this problem. We then show that a natural and plausible average-case assumption for the key problem Zero-k-Clique from fine-grained complexity satisfies our properties. We also develop fine-grained one-way functions and hardcore bits even under these weaker assumptions. Where previous works had to assume random oracles or the existence of strong one-way functions to get a key-exchange computable in O(n) time secure against O(n^2) time adversaries (see [Merkle’78] and [BGI’08]), our assumptions seem much weaker. Our key exchange has a similar gap between the computation of the honest party and the adversary as prior work, while being non-interactive, implying fine-grained PKC.
Chavrimootoo, Michael C
(, Information processing letters)
Using the notion of visibility representations, our paper establishes a new property of instances of the Nondeterministic Constraint Logic (NCL) problem (a PSPACE-complete problem that is very convenient to prove the PSPACE-hardness of reversible games with pushing blocks). Direct use of this property introduces an explosion in the number of gadgets needed to show PSPACE-hardness, but we show how to bring that number from 32 down to only three in the general case, and down to two in our specific case! We propose it as a step towards a broader and more general framework for studying games with irreversible gravity, and use this connection to guide an indirect polynomial-time many-one reduction from the NCL problem to the Hanano Puzzle—which is NP-hard—to prove it is PSPACE-complete.
Allender, Eric, Cheraghchi, Mahdi, Myrisiotis, Dimitrios, Tirumala, Harsha, and Volkovich, Ilya. One-Way Functions and a Conditional Variant of MKTP. Retrieved from https://par.nsf.gov/biblio/10351110. Leibniz international proceedings in informatics 213. Web. doi:10.4230/LIPIcs.FSTTCS.2021.7.
Allender, Eric, Cheraghchi, Mahdi, Myrisiotis, Dimitrios, Tirumala, Harsha, & Volkovich, Ilya. One-Way Functions and a Conditional Variant of MKTP. Leibniz international proceedings in informatics, 213 (). Retrieved from https://par.nsf.gov/biblio/10351110. https://doi.org/10.4230/LIPIcs.FSTTCS.2021.7
Allender, Eric, Cheraghchi, Mahdi, Myrisiotis, Dimitrios, Tirumala, Harsha, and Volkovich, Ilya.
"One-Way Functions and a Conditional Variant of MKTP". Leibniz international proceedings in informatics 213 (). Country unknown/Code not available. https://doi.org/10.4230/LIPIcs.FSTTCS.2021.7.https://par.nsf.gov/biblio/10351110.
@article{osti_10351110,
place = {Country unknown/Code not available},
title = {One-Way Functions and a Conditional Variant of MKTP},
url = {https://par.nsf.gov/biblio/10351110},
DOI = {10.4230/LIPIcs.FSTTCS.2021.7},
abstractNote = {One-way functions (OWFs) are central objects of study in cryptography and computational complexity theory. In a seminal work, Liu and Pass (FOCS 2020) proved that the average-case hardness of computing time-bounded Kolmogorov complexity is equivalent to the existence of OWFs. It remained an open problem to establish such an equivalence for the average-case hardness of some natural NP-complete problem. In this paper, we make progress on this question by studying a conditional variant of the Minimum KT-complexity Problem (MKTP), which we call McKTP, as follows. 1) First, we prove that if McKTP is average-case hard on a polynomial fraction of its instances, then there exist OWFs. 2) Then, we observe that McKTP is NP-complete under polynomial-time randomized reductions. 3) Finally, we prove that the existence of OWFs implies the nontrivial average-case hardness of McKTP. Thus the existence of OWFs is inextricably linked to the average-case hardness of this NP-complete problem. In fact, building on recently-announced results of Ren and Santhanam [Rahul Ilango et al., 2021], we show that McKTP is hard-on-average if and only if there are logspace-computable OWFs.},
journal = {Leibniz international proceedings in informatics},
volume = {213},
author = {Allender, Eric and Cheraghchi, Mahdi and Myrisiotis, Dimitrios and Tirumala, Harsha and Volkovich, Ilya},
editor = {Bojanczy, Mikolaj and Chekuri, Chandra}
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.