skip to main content

Title: One-on-one meetings as Boundary Practices: Managing RPP Computer Science Curriculum Co-design
Research-practitioner partnership (RPP) projects using approaches such as design-based implementation research (DBIR), seek to build organizational infrastructure to develop, implement, and sustain educational innovation [19]. Infrastructure consists of the practices and objects that support educational practice. Infrastructure constitutes human and material resources and structures that support joint work [18,29]. Although RPP literature has identified co-design as an infrastructure-building approach, to the best of our knowledge, specific techniques for managing co-design and other infrastructure building practices are still lacking [9,18,23]. Without such tools, RPP partners' varied backgrounds, workplace norms, and priorities can produce behaviors that may be normal in the context of a single organization but can impede communication, resource access, and innovation implementation in a collaborative context. The NSF-funded Computer Science Pathways RPP (CS Pathways) project's DBIR approach uses co-design of a culturally responsive middle school CS curriculum to develop infrastructure for providing high-quality CS education across three urban school districts. The curriculum focuses on developing mobile apps for social good and will be taught by teachers with varied CS experience in varied classroom contexts (e.g., civics, science). The purpose of this workshop paper is to demonstrate a technique, namely Manager Tools One-on-one meetings [15], adapted by CS Pathways partners more » to manage the co-design process. O3s have six features: they are frequent; scheduled; 15 to 30 minutes in duration; held with all participants working on a specified project; semi-structured; and documented by the manager or researcher. This workshop paper describes how to use O3s to engage teachers and researchers in developing collaborative infrastructure to promote shared exploration of feedback and build and sustain partnerships. « less
Authors:
; ; ; ; ;
Editors:
CSforALL & SageFox Consulting Group
Award ID(s):
1923461 1923452
Publication Date:
NSF-PAR ID:
10351381
Journal Name:
The intersection of RPPs and BPC in CS education: A culmination of papers from the RPPforCS Community
Sponsoring Org:
National Science Foundation
More Like this
  1. Background: Researcher-practitioner partnerships (RPPs) have gained increasing prominence within education, since they are crucial for identifying partners’ problems of practice and seeking solutions for improving district (or school) problems. The CS Pathways RPP project brought together researchers and practitioners, including middle school teachers and administrators from three urban school districts, to build teachers’ capacity to implement an inclusive computer science and digital literacy (CSDL) curriculum for all students in their middle schools. Objective: This study explored the teachers’ self-efficacy development in teaching a middle school CSDL curriculum under the project’s RPP framework. The ultimate goal was to gain insights into how the project’s RPP framework and its professional development (PD) program supported teachers’ self-efficacy development, in particular its challenges and success of the partnership. Method: Teacher participants attended the first-year PD program and were surveyed and/or interviewed about their self-efficacy in teaching CSDL curriculum, spanning topics ranging from digital literacy skills to app creation ability and curriculum implementation. Both survey and interview data were collected and analyzed using mixed methods 1) to examine the reach of the RPP PD program in terms of teachers’ self-efficacy; 2) to produce insightful understandings of the PD program impact on the project’s goal ofmore »building teachers’ self-efficacy. Results and Discussion: We reported the teachers’ self-efficacy profiles based on the survey data. A post-survey indicated that a majority of the teachers have high self-efficacy in teaching the CSDL curriculum addressed by the RPP PD program. Our analysis identified five critical benefits the project’s RPP PD program provided, namely collaborative efforts on resource and infrastructure building, content and pedagogical knowledge growth, collaboration and communication, and building teacher identity. All five features have shown direct impacts on teachers' self-efficacy. The study also reported teachers’ perceptions on the challenges they faced and potential areas for improvements. These findings indicate some important features of an effective PD program, informing the primary design of an RPP CS PD program.« less
  2. Background and Context: Most large-scale statewide initiatives of the Computer Science for All (CS for All) movement have focused on the classroom level. Critical questions remain about building school and district leadership capacity to support teachers while implementing equitable computer science education that is scalable and sustainable.

    Objective: This statewide research-practice partnership, involving university researchers and school leaders from 14 local education agencies (LEA) from district and county offices, addresses the following research question: What do administrators identify as most helpful for understanding issues related to equitable computer science implementation when engaging with a guide and workshop we collaboratively developed to help leadership in such efforts?

    Method: Participant surveys, interviews, and workshop observations were analyzed to understand best practices for professional development supporting educational leaders.

    Findings: Administrators value computer science professional development resources that: (a) have a clear focus on “equity;” (b) engage with data and examples that deepen understandings of equity; (c) provide networking opportunities; (d) have explicit workshop purpose and activities; and (e) support deeper discussions of computer science implementation challenges through pairing a workshop and a guide.

    Implications: Utilizing Ishimaru and Galloway’s (2014) framework for equitable leadership practices, this study offers an actionable construct for equitable implementationmore »of computer science including (a) how to build equity leadership and vision; (b) how to enact that vision; and (c) how to scale and sustain that vision. While this construct applies to equitable leadership practices more broadly across all disciplines, we found its application particularly useful when explicitly focused on equity leadership practices in computer science.

    « less
  3. This poster shares our experience of engaging middle school teachers in a collaborative design of a computer science and digital literacy (CSDL) curriculum through a researcher and practitioner partnership (RPP) among two public universities and three urban school districts in the Northeast USA. The project used the co-design approach to facilitate curriculum development and foster professional learning. In this poster, we introduce the co-design process, the developed curriculum, and teachers' professional learning experiences. Preliminary results indicate that the co-design approach supplemented with one-one-on coaching has not only facilitated the curriculum development but also fostered professional learning and collective capacity building for CS education.
  4. International collaborations for community colleges are important for students who will be competing for employment yet are often overlooked due to the perception that international means expensive. The International Education Initiative (IEI) provides opportunities for international collaboration among community college faculty and students. The IEI is a multi-tiered program that allows different levels of participation and cost for faculty and students through funding from the National Science Foundation Advanced Technological Education Program and the French Embassy in the United States. While the main focus is engineering and technology courses, partners have also included business and communications classes, creating a truly interdisciplinary program. Students participating in these programs can expect to have greater cross-cultural maturity and awareness of the wider world, increased confidence in finding future success in the global workforce, and increased ability to deploy 21st Century skills such as technology and teamwork. Faculty participating in the program can expect to have increased confidence and skills in faculty to support students in achieving 21st century skills; increased ability to co-teach and work effectively with and overseas partner, and more motivation and readiness to sustain overseas partnerships and help grow the international program. The Connecticut Collaborative Learning for International Capabilities andmore »Knowledge (CT CLICKs) provides the opportunity for students to receive a global experience as part of a course they are already taking. During the first year of the program, Faculty from Connecticut community colleges partnered with faculty from French Insitituts universitaires de technologie (IUTs), French equivalent of community colleges, to co-teach curriculum modules to their participating classes. The second year added the option of co-facilitating a project between the two classes. All teaching, assignments, and projects were completed through virtual platforms. Several travel opportunities have been provided for student and faculty participants. These have either been through the attendance of international technology bootcamps that were organized by the French Embassy or a partner IUT or through a travel program organized by the IEI. Both travel options include experiences that provide an overview of French engineering and technology education, industry, history, and culture. A faculty recruitment and preparation model has been created to continuously onboard new faculty for the IEI program. The model includes a program overview workshop, partner matching, and curriculum design workshop that all take place virtually. The CT CLICKs program has built steadily and quickly. The number of teachers participating grew from 6 to 29 in the first three years with more than 6 teachers repeating or developing new modules. A total of 334 students have participated in the CT CLICKs program since fall 2017. The number of Connecticut campuses grew from 1 to 8 and overseas partner campuses grew from 2 to 5. Participant survey data shows that the program is continuously improving in helping students gain a better worldview and how to collaborate cross-culturally and helping faculty incorporate international collaboration into their courses.« less
  5. International collaborations for community colleges are important for students who will be competing for employment yet are often overlooked due to the perception that international means expensive. The International Education Initiative (IEI) provides opportunities for international collaboration among community college faculty and students. The IEI is a multi-tiered program that allows different levels of participation and cost for faculty and students through funding from the National Science Foundation Advanced Technological Education Program and the French Embassy in the United States. While the main focus is engineering and technology courses, partners have also included business and communications classes, creating a truly interdisciplinary program. Students participating in these programs can expect to have greater cross-cultural maturity and awareness of the wider world, increased confidence in finding future success in the global workforce, and increased ability to deploy 21st Century skills such as technology and teamwork. Faculty participating in the program can expect to have increased confidence and skills in faculty to support students in achieving 21st century skills; increased ability to co-teach and work effectively with and overseas partner, and more motivation and readiness to sustain overseas partnerships and help grow the international program. The Connecticut Collaborative Learning for International Capabilities andmore »Knowledge (CT CLICKs) provides the opportunity for students to receive a global experience as part of a course they are already taking. During the first year of the program, Faculty from Connecticut community colleges partnered with faculty from French Insitituts universitaires de technologie (IUTs), French equivalent of community colleges, to co-teach curriculum modules to their participating classes. The second year added the option of co-facilitating a project between the two classes. All teaching, assignments, and projects were completed through virtual platforms. Several travel opportunities have been provided for student and faculty participants. These have either been through the attendance of international technology bootcamps that were organized by the French Embassy or a partner IUT or through a travel program organized by the IEI. Both travel options include experiences that provide an overview of French engineering and technology education, industry, history, and culture. A faculty recruitment and preparation model has been created to continuously onboard new faculty for the IEI program. The model includes a program overview workshop, partner matching, and curriculum design workshop that all take place virtually. The CT CLICKs program has built steadily and quickly. The number of teachers participating grew from 6 to 29 in the first three years with more than 6 teachers repeating or developing new modules. A total of 334 students have participated in the CT CLICKs program since fall 2017. The number of Connecticut campuses grew from 1 to 8 and overseas partner campuses grew from 2 to 5. Participant survey data shows that the program is continuously improving in helping students gain a better worldview and how to collaborate cross-culturally and helping faculty incorporate international collaboration into their courses.« less