skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Jitterbug: A New Framework for Jitter-Based Congestion Inference
We investigate a novel approach to the use of jitter to infer network congestion using data collected by probes in access networks. We discovered a set of features in jitter and jitter dispersion —a jitter-derived time series we define in this paper—time series that are characteristic of periods of congestion. We leverage these concepts to create a jitter-based congestion inference framework that we call Jitterbug. We apply Jitterbug’s capabilities to a wide range of traffic scenarios and discover that Jitterbug can correctly identify both recurrent and one-off congestion events. We validate Jitterbug inferences against state-of-the-art autocorrelation-based inferences of recurrent congestion. We find that the two approaches have strong congruity in their inferences, but Jitterbug holds promise for detecting one-off as well as recurrent congestion. We identify several future directions for this research including leveraging ML/AI techniques to optimize performance and accuracy of this approach in operational settings.  more » « less
Award ID(s):
1724853 1925729
PAR ID:
10351414
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 23rd International Conference on Passive and Active Measurement, PAM 2022
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is significant interest in the technical and policy communities regarding the extent, scope, and consumer harm of persistent interdomain congestion. We provide empirical grounding for discussions of interdomain congestion by developing a system and method to measure congestion on thousands of interdomain links without direct access to them. We implement a system based on the Time Series Latency Probes (TSLP) technique that identifies links with evidence of recurring congestion suggestive of an under-provisioned link. We deploy our system at 86 vantage points worldwide and show that congestion inferred using our lightweight TSLP method correlates with other metrics of interconnection performance impairment. We use our method to study interdomain links of eight large U.S. broadband access providers from March 2016 to December 2017, and validate our inferences against ground-truth traffic statistics from two of the providers. For the period of time over which we gathered measurements, we did not find evidence of widespread endemic congestion on interdomain links between access ISPs and directly connected transit and content providers, although some such links exhibited recurring congestion patterns. We describe limitations, open challenges, and a path toward the use of this method for large-scale third-party monitoring of the Internet interconnection ecosystem. 
    more » « less
  2. Abstract Recurrent neural networks have seen widespread use in modeling dynamical systems in varied domains such as weather prediction, text prediction and several others. Often one wishes to supplement the experimentally observed dynamics with prior knowledge or intuition about the system. While the recurrent nature of these networks allows them to model arbitrarily long memories in the time series used in training, it makes it harder to impose prior knowledge or intuition through generic constraints. In this work, we present a path sampling approach based on principle of Maximum Caliber that allows us to include generic thermodynamic or kinetic constraints into recurrent neural networks. We show the method here for a widely used type of recurrent neural network known as long short-term memory network in the context of supplementing time series collected from different application domains. These include classical Molecular Dynamics of a protein and Monte Carlo simulations of an open quantum system continuously losing photons to the environment and displaying Rabi oscillations. Our method can be easily generalized to other generative artificial intelligence models and to generic time series in different areas of physical and social sciences, where one wishes to supplement limited data with intuition or theory based corrections. 
    more » « less
  3. Traffic congestion anomaly detection is of paramount importance in intelligent traffic systems. The goals of transportation agencies are two-fold: to monitor the general traffic conditions in the area of interest and to locate road segments under abnormal congestion states. Modeling congestion patterns can achieve these goals for citywide roadways, which amounts to learning the distribution of multivariate time series (MTS). However, existing works are either not scalable or unable to capture the spatial-temporal information in MTS simultaneously. To this end, we propose a principled and comprehensive framework consisting of a data-driven generative approach that can perform tractable density estimation for detecting traffic anomalies. Our approach first clusters segments in the feature space and then uses conditional normalizing flow to identify anomalous temporal snapshots at the cluster level in an unsupervised setting. Then, we identify anomalies at the segment level by using a kernel density estimator on the anomalous cluster. Extensive experiments on synthetic datasets show that our approach significantly outperforms several state-of-the-art congestion anomaly detection and diagnosis methods in terms of Recall and F1-Score. We also use the generative model to sample labeled data, which can train classifiers in a supervised setting, alleviating the lack of labeled data for anomaly detection in sparse settings. 
    more » « less
  4. Traffic congestion anomaly detection is of paramount importance in intelligent traffic systems. The goals of transportation agencies are two-fold: to monitor the general traffic conditions in the area of interest and to locate road segments under abnormal congestion states. Modeling congestion patterns can achieve these goals for citywide roadways, which amounts to learning the distribution of multivariate time series (MTS). However, existing works are either not scalable or unable to capture the spatial-temporal information in MTS simultaneously. To this end, we propose a principled and comprehensive framework consisting of a data-driven generative approach that can perform tractable density estimation for detecting traffic anomalies. Our approach first clusters segments in the feature space and then uses conditional normalizing flow to identify anomalous temporal snapshots at the cluster level in an unsupervised setting. Then, we identify anomalies at the segment level by using a kernel density estimator on the anomalous cluster. Extensive experiments on synthetic datasets show that our approach significantly outperforms several state-of-the-art congestion anomaly detection and diagnosis methods in terms of Recall and F1-Score. We also use the generative model to sample labeled data, which can train classifiers in a supervised setting, alleviating the lack of labeled data for anomaly detection in sparse settings. 
    more » « less
  5. Traffic networks are one of the most critical infrastructures for any community. The increasing integration of smart and connected sensors in traffic networks provides researchers with unique opportunities to study the dynamics of this critical community infrastructure. Our focus in this paper is on the failure dynamics of traffic networks. By failure, we mean in this domain the hindrance of the normal operation of a traffic network due to cyber anomalies or physical incidents that cause cascaded congestion throughout the network. We are specifically interested in analyzing the cascade effects of traffic congestion caused by physical incidents, focusing on developing mechanisms to isolate and identify the source of a congestion. To analyze failure propagation, it is crucial to develop (a) monitors that can identify an anomaly and (b) a model to capture the dynamics of anomaly propagation. In this paper, we use real traffic data from Nashville, TN to demonstrate a novel anomaly detector and a Timed Failure Propagation Graph based diagnostics mechanism. Our novelty lies in the ability to capture the the spatial information and the interconnections of the traffic network as well as the use of recurrent neural network architectures to learn and predict the operation of a graph edge as a function of its immediate peers, including both incoming and outgoing branches. Our results show that our LSTM-based traffic-speed predictors attain an average mean squared error of 6.55 10−4 on predicting normalized traffic speed, while Gaussian Process Regression based predictors attain a much higher aver- age mean squared error of 1.78 10−2. We are also able to detect anomalies with high precision and recall, resulting in an AUC (Area Under Curve) of 0.8507 for the precision- recall curve. To study physical traffic incidents, we augment the real data with simulated data generated using SUMO, a traffic simulator. Finally, we analyzed the cascading effect of the congestion propagation by formulating the problem as a Timed Failure Propagation Graph, which led us in identifying the source of a failure/congestion accurately. 
    more » « less