skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data-Driven Detection of Anomalies and Cascading Failures in Traffic Networks
Traffic networks are one of the most critical infrastructures for any community. The increasing integration of smart and connected sensors in traffic networks provides researchers with unique opportunities to study the dynamics of this critical community infrastructure. Our focus in this paper is on the failure dynamics of traffic networks. By failure, we mean in this domain the hindrance of the normal operation of a traffic network due to cyber anomalies or physical incidents that cause cascaded congestion throughout the network. We are specifically interested in analyzing the cascade effects of traffic congestion caused by physical incidents, focusing on developing mechanisms to isolate and identify the source of a congestion. To analyze failure propagation, it is crucial to develop (a) monitors that can identify an anomaly and (b) a model to capture the dynamics of anomaly propagation. In this paper, we use real traffic data from Nashville, TN to demonstrate a novel anomaly detector and a Timed Failure Propagation Graph based diagnostics mechanism. Our novelty lies in the ability to capture the the spatial information and the interconnections of the traffic network as well as the use of recurrent neural network architectures to learn and predict the operation of a graph edge as a function of its immediate peers, including both incoming and outgoing branches. Our results show that our LSTM-based traffic-speed predictors attain an average mean squared error of 6.55 10−4 on predicting normalized traffic speed, while Gaussian Process Regression based predictors attain a much higher aver- age mean squared error of 1.78 10−2. We are also able to detect anomalies with high precision and recall, resulting in an AUC (Area Under Curve) of 0.8507 for the precision- recall curve. To study physical traffic incidents, we augment the real data with simulated data generated using SUMO, a traffic simulator. Finally, we analyzed the cascading effect of the congestion propagation by formulating the problem as a Timed Failure Propagation Graph, which led us in identifying the source of a failure/congestion accurately.  more » « less
Award ID(s):
1818901 1647015 1840052 1814958
PAR ID:
10117236
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the Annual Conference of the PHM Society
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Traffic networks are one of the most critical infrastructures for any community. The increasing integration of smart and connected sensors in traffic networks provides researchers with unique opportunities to study the dynamics of this critical community infrastructure. Our focus in this paper is on the failure dynamics of traffic networks. We are specifically interested in analyzing the cascade effects of traffic congestions caused by physical incidents, focusing on developing mechanisms to isolate and identify the source of a congestion. To analyze failure propagation, it is crucial to develop (a) monitors that can identify an anomaly and (b) a model to capture the dynamics of anomaly propagation. In this paper, we use real traffic data from Nashville, TN to demonstrate a novel anomaly detector and a Timed Failure Propagation Graph based diagnostics mechanism. Our novelty lies in the ability to capture the the spatial information and the interconnections of the traffic network as well as the use of recurrent neural network architectures to learn and predict the operation of a graph edge as a function of its immediate peers, including both incoming and outgoing branches. To study physical traffic incidents, we augment the real data with simulated data generated using SUMO, a microscopic traffic simulator. Our results show that we are able to build LSTM-based traffic-speed predictors with an average loss of 6.55 × 10^−4 compared to Gaussian Process Regression based predictors with an average loss of 1.78 × 10^−2. We are also able to detect anomalies with high precision and recall, resulting in an AUC of 0.8507 for the precision-recall curve. Finally, formulating the cascade propagation problem as a Timed Failure Propagation Graph, we are able to identify the source of a failure accurately. 
    more » « less
  2. This paper presents a data-driven approach for predicting the propagation of traffic congestion at road segments as a function of the congestion in their neighboring segments. In the past, this problem has mostly been addressed by modelling the traffic congestion over some standard physical phenomenon through which it is difficult to capture all the modalities of such a dynamic and complex system. While other recent works have focused on applying a generalized data-driven technique on the whole network at once, they often ignore intersection characteristics. On the contrary, we propose a city-wide ensemble of intersection level connected LSTM models and propose mechanisms for identifying congestion events using the predictions from the networks. To reduce the search space of likely congestion sinks we use the likelihood of congestion propagation in neighboring road segments of a congestion source that we learn from the past historical data. We validated our congestion forecasting framework on the real world traffic data of Nashville, USA and identified the onset of congestion in each of the neighboring segments of any congestion source with an average precision of 0.9269 and an average recall of 0.9118 tested over ten congestion events. 
    more » « less
  3. Traffic congestion anomaly detection is of paramount importance in intelligent traffic systems. The goals of transportation agencies are two-fold: to monitor the general traffic conditions in the area of interest and to locate road segments under abnormal congestion states. Modeling congestion patterns can achieve these goals for citywide roadways, which amounts to learning the distribution of multivariate time series (MTS). However, existing works are either not scalable or unable to capture the spatial-temporal information in MTS simultaneously. To this end, we propose a principled and comprehensive framework consisting of a data-driven generative approach that can perform tractable density estimation for detecting traffic anomalies. Our approach first clusters segments in the feature space and then uses conditional normalizing flow to identify anomalous temporal snapshots at the cluster level in an unsupervised setting. Then, we identify anomalies at the segment level by using a kernel density estimator on the anomalous cluster. Extensive experiments on synthetic datasets show that our approach significantly outperforms several state-of-the-art congestion anomaly detection and diagnosis methods in terms of Recall and F1-Score. We also use the generative model to sample labeled data, which can train classifiers in a supervised setting, alleviating the lack of labeled data for anomaly detection in sparse settings. 
    more » « less
  4. Traffic congestion anomaly detection is of paramount importance in intelligent traffic systems. The goals of transportation agencies are two-fold: to monitor the general traffic conditions in the area of interest and to locate road segments under abnormal congestion states. Modeling congestion patterns can achieve these goals for citywide roadways, which amounts to learning the distribution of multivariate time series (MTS). However, existing works are either not scalable or unable to capture the spatial-temporal information in MTS simultaneously. To this end, we propose a principled and comprehensive framework consisting of a data-driven generative approach that can perform tractable density estimation for detecting traffic anomalies. Our approach first clusters segments in the feature space and then uses conditional normalizing flow to identify anomalous temporal snapshots at the cluster level in an unsupervised setting. Then, we identify anomalies at the segment level by using a kernel density estimator on the anomalous cluster. Extensive experiments on synthetic datasets show that our approach significantly outperforms several state-of-the-art congestion anomaly detection and diagnosis methods in terms of Recall and F1-Score. We also use the generative model to sample labeled data, which can train classifiers in a supervised setting, alleviating the lack of labeled data for anomaly detection in sparse settings. 
    more » « less
  5. null (Ed.)
    We introduce a novel methodology for anomaly detection in time-series data. The method uses persistence diagrams and bottleneck distances to identify anomalies. Specifically, we generate multiple predictors by randomly bagging the data (reference bags), then for each data point replacing the data point for a randomly chosen point in each bag (modified bags). The predictors then are the set of bottleneck distances for the reference/modified bag pairs. We prove the stability of the predictors as the number of bags increases. We apply our methodology to traffic data and measure the performance for identifying known incidents. 
    more » « less