skip to main content

Title: Seasonality of the Mesoscale Inverse Cascade as Inferred from Global Scale-Dependent Eddy Energy Observations
Abstract Oceanic mesoscale motions including eddies, meanders, fronts, and filaments comprise a dominant fraction of oceanic kinetic energy and contribute to the redistribution of tracers in the ocean such as heat, salt, and nutrients. This reservoir of mesoscale energy is regulated by the conversion of potential energy and transfers of kinetic energy across spatial scales. Whether and under what circumstances mesoscale turbulence precipitates forward or inverse cascades, and the rates of these cascades, remain difficult to directly observe and quantify despite their impacts on physical and biological processes. Here we use global observations to investigate the seasonality of surface kinetic energy and upper-ocean potential energy. We apply spatial filters to along-track satellite measurements of sea surface height to diagnose surface eddy kinetic energy across 60–300-km scales. A geographic and scale-dependent seasonal cycle appears throughout much of the midlatitudes, with eddy kinetic energy at scales less than 60 km peaking 1–4 months before that at 60–300-km scales. Spatial patterns in this lag align with geographic regions where an Argo-derived estimate of the conversion of potential to kinetic energy is seasonally varying. In midlatitudes, the conversion rate peaks 0–2 months prior to kinetic energy at scales less than 60 km. The consistent geographic patterns between the seasonality of potential energy conversion and kinetic energy across spatial scale provide observational evidence for the inverse cascade and demonstrate that some component of it is seasonally modulated. Implications for mesoscale parameterizations and numerical modeling are discussed. Significance Statement This study investigates the seasonality of upper-ocean potential and kinetic energy in the context of an inverse cascade, consisting of energy transfers to and through the mesoscale. Observations show a scale-dependent cycle in kinetic energy that coincides with temporal variability in mixed layer potential energy and progresses seasonally from smaller to larger scales. This pattern appears dominant over large regions of the ocean. Results are relevant to ocean and climate models, where a large fraction of ocean energy is often parameterized. A customizable code repository and dataset are provided to enable comparisons of model-based resolved and unresolved kinetic energy to observational equivalents. Implications result for a range of processes including mixed layer stratification and vertical structure of ocean currents.  more » « less
Award ID(s):
1912302 1912325
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Physical Oceanography
Page Range / eLocation ID:
1677 to 1691
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The interactions between oceanic mesoscale eddies, submesoscale currents, and internal gravity waves (IWs) are investigated in submesoscale-resolving realistic simulations in the North Atlantic Ocean. Using a novel analysis framework that couples the coarse-graining method in space with temporal filtering and a Helmholtz decomposition, we quantify the effects of the interactions on the cross-scale kinetic energy (KE) and enstrophy fluxes. By systematically comparing solutions with and without IW forcing, we show that externally forced IWs stimulate a reduction in the KE inverse cascade associated with mesoscale rotational motions and an enhancement in the KE forward cascade associated with divergent submesoscale currents, i.e., a “stimulated cascade” process. The corresponding IW effects on the enstrophy fluxes are seasonally dependent, with a stimulated reduction (enhancement) in the forward enstrophy cascade during summer (winter). Direct KE and enstrophy transfers from currents to IWs are also found, albeit with weaker magnitudes compared with the stimulated cascades. We further find that the forward KE and enstrophy fluxes associated with IW motions are almost entirely driven by the scattering of the waves by the rotational eddy field, rather than by wave–wave interactions. This process is investigated in detail in a companion manuscript. Finally, we demonstrate that the stimulated cascades are spatially localized in coherent structures. Specifically, the magnitude and direction of the bidirectional KE fluxes at submesoscales are highly correlated with, and inversely proportional to, divergence-dominated circulations, and the inverse KE fluxes at mesoscales are highly correlated with strain-dominated circulations. The predominantly forward enstrophy fluxes in both seasons are also correlated with strain-dominated flow structures.

    more » « less
  2. Abstract We use an interannually forced version of the Parallel Ocean Program, configured to resolve mesoscale eddies, to close the global eddy potential energy (EPE) budget associated with temperature variability. By closing the EPE budget, we are able to properly investigate the role of diabatic processes in modulating mesoscale energetics in the context of other processes driving eddy–mean flow interactions. A Helmholtz decomposition of the eddy heat flux field into divergent and rotational components is applied to estimate the baroclinic conversion from mean to eddy potential energy. In doing so, an approximate two-way balance between the “divergent” baroclinic conversion and upgradient vertical eddy heat fluxes in the ocean interior is revealed, in accordance with baroclinic instability and the relaxation of isopycnal slopes. However, in the mixed layer, the EPE budget is greatly modulated by diabatic mixing, with air–sea interactions and interior diffusion playing comparable roles. Globally, this accounts for ∼60% of EPE converted to EKE (eddy kinetic energy), with the remainder being dissipated by air–sea interactions and interior mixing. A seasonal composite of baroclinic energy conversions shows that the strongest EPE to EKE conversion occurs during the summer in both hemispheres. The seasonally varying diabatic processes in the upper ocean are further shown to be closely linked to this EPE–EKE conversion seasonality, but with a lead. The peak energy dissipation through vertical mixing occurs ahead of the minimum EKE generation by 1–2 months. 
    more » « less
  3. Abstract Energy exchanges between large-scale ocean currents and mesoscale eddies play an important role in setting the large-scale ocean circulation but are not fully captured in models. To better understand and quantify the ocean energy cycle, we apply along-isopycnal spatial filtering to output from an isopycnal 1/32° primitive equation model with idealized Atlantic and Southern Ocean geometry and topography. We diagnose the energy cycle in two frameworks: 1) a non-thickness-weighted framework, resulting in a Lorenz-like energy cycle, and 2) a thickness-weighted framework, resulting in the Bleck energy cycle. This paper shows that framework 2 is more useful for studying energy pathways when an isopycnal average is used. Next, we investigate the Bleck cycle as a function of filter scale. Baroclinic conversion generates mesoscale eddy kinetic energy over a wide range of scales and peaks near the deformation scale at high latitudes but below the deformation scale at low latitudes. Away from topography, an inverse cascade transfers kinetic energy from the mesoscales to larger scales. The upscale energy transfer peaks near the energy-containing scale at high latitudes but below the deformation scale at low latitudes. Regions downstream of topography are characterized by a downscale kinetic energy transfer, in which mesoscale eddies are generated through barotropic instability. The scale- and flow-dependent energy pathways diagnosed in this paper provide a basis for evaluating and developing scale- and flow-aware mesoscale eddy parameterizations. Significance Statement Blowing winds provide a major energy source for the large-scale ocean circulation. A substantial fraction of this energy is converted to smaller-scale eddies, which swirl through the ocean as sea cyclones. Ocean turbulence causes these eddies to transfer part of their energy back to the large-scale ocean currents. This ocean energy cycle is not fully simulated in numerical models, but it plays an important role in transporting heat, carbon, and nutrients throughout the world’s oceans. The purpose of this study is to quantify the ocean energy cycle by using fine-scale idealized numerical simulations of the Atlantic and Southern Oceans. Our results provide a basis for how to include unrepresented energy exchanges in coarse global climate models. 
    more » « less
  4. Abstract

    The Southern Ocean's eddy response to changing climate remains unclear, with observations suggesting non‐monotonic changes in eddy kinetic energy (EKE) across scales. Here simulations reappear that smaller‐mesoscale EKE is suppressed while larger‐mesoscale EKE increases with strengthened winds. This change was linked to scale‐wise changes in the kinetic energy cycle, where a sensitive balance between the dominant mesoscale energy sinks—inverse KE cascade, and source—baroclinic energization. Such balance induced a strong (weak) mesoscale suppression in the flat (ridge) channel. Mechanistically, this mesoscale suppression is attributed to stronger zonal jets weakening smaller mesoscale eddies and promoting larger‐scale waves. These EKE multiscale changes lead to multiscale changes in meridional and vertical eddy transport, which can be parameterized using a scale‐dependent diffusivity linked to the EKE spectrum. This multiscale eddy response may have significant implications for understanding and modeling the Southern Ocean eddy activity and transport under a changing climate.

    more » « less
  5. Abstract

    Submesoscale currents and internal gravity waves achieve an intense turbulent cascade near the ocean surface [depth of 0–O(100) m], which is thought to give rise to significant energy sources and sinks for mesoscale eddies. Here, we characterize the contributions of nonwave currents (NWCs; including eddies and fronts) and internal gravity waves (IGWs; including near-inertial motions, lee waves, and the internal wave continuum) to near-surface submesoscale turbulence in the Drake Passage. Using a numerical simulation, we combine Lagrangian filtering and a Helmholtz decomposition to identify NWCs and IGWs and to characterize their dynamics (rotational versus divergent). We show that NWCs and IGWs contribute in different proportions to the inverse and forward turbulent kinetic energy cascades, based on their dynamics and spatiotemporal scales. Purely rotational NWCs cause most of the inverse cascade, while coupled rotational–divergent components of NWCs and coupled NWC–IGWs cause the forward cascade. The cascade changes direction at a spatial scale at which motions become increasingly divergent. However, the forward cascade is ultimately limited by the motions’ spatiotemporal scales. The bulk of the forward cascade (80%–95%) is caused by NWCs and IGWs of small spatiotemporal scales (L< 10 km;T< 6 h), which are primarily rotational: submesoscale eddies, fronts, and the internal wave continuum. These motions also cause a significant part of the inverse cascade (30%). Our results highlight the requirement for high spatiotemporal resolutions to diagnose the properties and large-scale impacts of near-surface submesoscale turbulence accurately, with significant implications for ocean energy cycle study strategies.

    more » « less