skip to main content


Title: A Guided Topic-Noise Model for Short Texts
Researchers using social media data want to understand the discussions occurring in and about their respective fields. These domain experts often turn to topic models to help them see the entire landscape of the conversation, but unsupervised topic models often produce topic sets that miss topics experts expect or want to see. To solve this problem, we propose Guided Topic-Noise Model (GTM), a semi-supervised topic model designed with large domain-specific social media data sets in mind. The input to GTM is a set of topics that are of interest to the user and a small number of words or phrases that belong to those topics. These seed topics are used to guide the topic generation process, and can be augmented interactively, expanding the seed word list as the model provides new relevant words for different topics. GTM uses a novel initialization and a new sampling algorithm called Generalized Polya Urn (GPU) seed word sampling to produce a topic set that includes expanded seed topics, as well as new unsupervised topics. We demonstrate the robustness of GTM on open-ended responses from a public opinion survey and four domain-specific Twitter data sets.  more » « less
Award ID(s):
1934925 1934494
NSF-PAR ID:
10351551
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
WWW '22: Proceedings of the ACM Web Conference 2022
Page Range / eLocation ID:
2870 to 2878
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Proceedings of the Sixteenth (Ed.)
    Instead of mining coherent topics from a given text corpus in a completely unsupervised manner, seed-guided topic discovery methods leverage user-provided seed words to extract distinctive and coherent topics so that the mined topics can better cater to the user’s interest. To model the semantic correlation between words and seeds for discovering topic-indicative terms, existing seedguided approaches utilize different types of context signals, such as document-level word co-occurrences, sliding window-based local contexts, and generic linguistic knowledge brought by pre-trained language models. In this work, we analyze and show empirically that each type of context information has its value and limitation in modeling word semantics under seed guidance, but combining three types of contexts (i.e., word embeddings learned from local contexts, pre-trained language model representations obtained from general-domain training, and topic-indicative sentences retrieved based on seed information) allows them to complement each other for discovering quality topics. We propose an iterative framework, SeedTopicMine, which jointly learns from the three types of contexts and gradually fuses their context signals via an ensemble ranking process. Under various sets of seeds and on multiple datasets, SeedTopicMine consistently yields more coherent and accurate topics than existing seed-guided topic discovery approaches. 
    more » « less
  2. Ruis, Andrew ; Lee, Seung B. (Ed.)
    When text datasets are very large, manually coding line by line becomes impractical. As a result, researchers sometimes try to use machine learning algorithms to automatically code text data. One of the most popular algorithms is topic modeling. For a given text dataset, a topic model provides probability distributions of words for a set of “topics” in the data, which researchers then use to interpret meaning of the topics. A topic model also gives each document in the dataset a score for each topic, which can be used as a non-binary coding for what proportion of a topic is in the document. Unfortunately, it is often difficult to interpret what the topics mean in a defensible way, or to validate document topic proportion scores as meaningful codes. In this study, we examine how keywords from codes developed by human experts were distributed in topics generated from topic modeling. The results show that (1) top keywords of a single topic often contain words from multiple human-generated codes; and conversely, (2) words from human-generated codes appear as high-probability keywords in multiple topic. These results explain why directly using topics from topic models as codes is problematic. However, they also imply that topic modeling makes it possible for researchers to discover codes from short word lists. 
    more » « less
  3. Existing topic modeling and text segmentation methodologies generally require large datasets for training, limiting their capabilities when only small collections of text are available. In this work, we reexamine the inter-related problems of “topic identification” and “text segmentation” for sparse document learning, when there is a single new text of interest. In developing a methodology to handle single documents, we face two major challenges. First is sparse information : with access to only one document, we cannot train traditional topic models or deep learning algorithms. Second is significant noise : a considerable portion of words in any single document will produce only noise and not help discern topics or segments. To tackle these issues, we design an unsupervised, computationally efficient methodology called Biclustering Approach to Topic modeling and Segmentation (BATS). BATS leverages three key ideas to simultaneously identify topics and segment text: (i) a new mechanism that uses word order information to reduce sample complexity, (ii) a statistically sound graph-based biclustering technique that identifies latent structures of words and sentences, and (iii) a collection of effective heuristics that remove noise words and award important words to further improve performance. Experiments on six datasets show that our approach outperforms several state-of-the-art baselines when considering topic coherence, topic diversity, segmentation, and runtime comparison metrics. 
    more » « less
  4. Most previous work in unsupervised semantic modeling in the presence of metadata has assumed that our goal is to make latent dimensions more correlated with metadata, but in practice the exact opposite is often true. Some users want topic models that highlight differences between, for example, authors, but others seek more subtle connections across authors. We introduce three metrics for identifying topics that are highly correlated with metadata, and demonstrate that this problem affects between 30 and 50% of the topics in models trained on two real-world collections, regardless of the size of the model. We find that we can predict which words cause this phenomenon and that by selectively subsampling these words we dramatically reduce topic-metadata correlation, improve topic stability, and maintain or even improve model quality 
    more » « less
  5. Abstract

    There is a growing interest in using social media content for Natural Language Processing applications. However, it is not easy to computationally identify the most relevant set of tweets related to any specific event. Challenging semantics coupled with different ways for using natural language in social media make it difficult for retrieving the most relevant set of data from any social media outlet. This paper seeks to demonstrate a way to present the changing semantics of Twitter within the context of a crisis event, specifically tweets during Hurricane Irma. These methods can be used to identify the most relevant corpus of text for analysis in relevance to a specific incident such as a hurricane. Using an implementation of the Word2Vec method of Neural Network training mechanisms to create Word Embeddings, this paper will: discuss how the relative meaning of words changes as events unfold; present a mechanism for scoring tweets based upon dynamic, relative context relatedness; and show that similarity between words is not necessarily static. We present different methods for training the vector model in Word2Vec for identification of the most relevant tweets for any search query. The impact of tuning parameters such as Word Window Size, Minimum Word Frequency, Hidden Layer Dimensionality, and Negative Sampling on model performance was explored. The window containing the local maximum for AU_ROC for each parameter serves as a guide for other studies using the methods presented here for social media data analysis.

     
    more » « less