skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Microfluidic-supported synthesis of anisotropic polyvinyl methacrylate nanoparticles via interfacial agents
For polymer particles, recent studies emphasized that the particle shape—not size—plays the dominant role in novel applications in fields ranging from nanotechnology, biomedicine, to photonics, which has intensified the quest for fabrication platforms of polymer colloids with complex non-spherical (anisotropic) shapes. Here, we developed a single-step, microfluidic-supported synthesis for anisotropic polyvinyl methacrylate (PVMA) nanoparticles (NPs) by combining the advantages of microfluidics (providing homogeneous conditions for the initial emulsification process) and bulk batch synthesis (providing inhomogenous conditions for the thermal polymerization). Specifically, we tested five interfacial agents regarding their direct impact on the NP shape (from isotropic spherical to anisotropic flower-like shapes) and their concentration-dependent impact (from 0.1 mM to 20 mM) on the NP diameter (from 200 nm to 50 nm). We employed vinyl methacrylate (VMA), a monomer offering two-polymerization active sites. With our work, we contribute to a fundamental understanding of colloidal polymerization towards predictive shapes below the critical 200 nm regime.  more » « less
Award ID(s):
2112550 1909824
PAR ID:
10351568
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Polymer Chemistry
Volume:
13
Issue:
32
ISSN:
1759-9954
Page Range / eLocation ID:
4625 to 4633
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The size and shape of polymer materials is becoming an increasingly important property in accessing new functions and applications of nano‐/microparticles in many scientific fields. New synthetic methods have allowed unprecedented capability for the facile fabrication of anisotropic and shape‐defined nanomaterials. Bottom‐up approaches including: emulsion polymerization techniques, amphiphile self‐assembly, and polymerization‐induced self‐assembly, can lead to polymer particles with precise dimensions in the nanoscale. Top‐down methods such as lithographic templating, and 3D printing, have increased the access to unique particle shapes. In this review, these recent developments are appraised and contrasted, with future research directions providing that focus on biomedical applications. Finally, the opportunity available for synergistic combinations of top‐down and bottom‐up fabrication approaches in realizing previously unattainable architectures and material properties is highlighted. 
    more » « less
  2. Structurally well-defined polymer-grafted nanoparticle hybrids are highly sought after for a variety of applications, such as antifouling, mechanical reinforcement, separations, and sensing. Herein, we report the synthesis of poly(methyl methacrylate) grafted- and poly(styrene) grafted-BaTiO3 nanoparticles using activator regeneration via electron transfer (ARGET ATRP) with a sacrificial initiator, atom transfer radical polymerization (normal ATRP), and ATRP with sacrificial initiator, to understand the role of the polymerization procedure in influencing the structure of nanoparticle hybrids. Irrespective of the polymerization procedure adopted for the synthesis of nanoparticle hybrids, we noticed PS grafted on the nanoparticles showed moderation in molecular weight and graft density (ranging from 30,400 to 83,900 g/mol and 0.122 to 0.067 chain/nm2) compared to PMMA-grafted nanoparticles (ranging from 44,620 to 230,000 g/mol and 0.071 to 0.015 chain/nm2). Reducing the polymerization time during ATRP has a significant impact on the molecular weight of polymer brushes grafted on the nanoparticles. PMMA-grafted nanoparticles synthesized using ATRP had lower graft density and considerably higher molecular weight compared to PS-grafted nanoparticles. However, the addition of a sacrificial initiator during ATRP resulted in moderation of the molecular weight and graft density of PMMA-grafted nanoparticles. The use of a sacrificial initiator along with ARGET offered the best control in achieving lower molecular weight and narrow dispersity for both PS (37,870 g/mol and PDI of 1.259) and PMMA (44,620 g/mol and PDI of 1.263) nanoparticle hybrid systems. 
    more » « less
  3. Introducing facile regenerability into adsorbent materials can potentially increase sustainability in water treatment systems enabled by extended use. Herein, we detail our recent syntheses of dynamic nanostructured worm-gel materials and their implementation as regenerable adsorbents for water treatment. Photo-controlled atom transfer radical polymerization-induced self-assembly (PhotoATR-PISA) was employed to synthesize various polymer nanostructures, including dispersed spheres, worms, and vesicles, and nanostructured worm-gels, via the synthesis and simultaneous in situ assembly of BAB triblock copolymers. Two dynamic, disulfide-functionalized macroinitiators (SS-MI-1 and 2)with different degree of polymerization and one nondynamic macroinitiator (CC-MI) were synthesized via polymerization of oligo(ethylene glycol methyl ether methacrylate) (OEGMA). PhotoATR-PISA was then implemented via the chain extension fromSS-MI-1, 2 and CC-MI with glycidyl methacrylate (GMA) or benzyl methacrylate (BMA) forming BAB-type triblock copolymer nanoparticles in situ. The final morphology in PhotoATR-PISA was influenced not only by conventional factors such as solids content and block DP but also by unimer exchange rates yielding arrested, nanostructured worm-gels in many instances and arrested vesicle-gels in one instance. These PISA-gel materials were implemented as adsorbents for phenanthrene, a model compound registered as a priority pollutant by the US EPA, from aqueous solutions. The chemical tunability of these materials enabled enhanced, targeted removal of phenanthrene facilitated by π−π interactions, as evidenced by the increased adsorption capacities of PBMA-based PISA-gels when compared to PGMA. Furthermore, the dynamicity of disulfide worm-gels (SS-WG) enabled disulfide exchange-induced regeneration stimulated by UV light. This UV-responsive exchange was investigated for POEGMA macroinitiators as well as dissolved triblock copolymers, dispersed nanoparticles, and SS-WG materials. Finally, the regenerability of the PNT-saturated SS-WG adsorbents induced by UV irradiation (λ = 365 nm) was examined and compared with control worm-gels absent of disulfides, demonstrating enhanced recovery of adsorption capacity under mild irradiation conditions. 
    more » « less
  4. Microgels are spherical particles suspended in solution, comprised of crosslinked polymer chains. Due to the amphiphilic property of the parent polymer, microgels display a temperature dependent volume phase transition (de-swelling), and thus have the potential to be used for drug delivery. Previous studies suggest that increasing the concentrations of the chemical cross-linker reduces the hydrodynamic radius (Rh) and the de-swelling ability, thus primary experiments focused on the variation of cross-linker to polymer ratios. Microgels were synthesized using the polysaccharide polymer hydroxypropyl cellulose (HPC) and chemical cross-linker divinyl sulfone (DVS), in a surfactant solution. Synthesized particles were characterized using dynamic light scattering (DLS) for temperature and angular dependence to study their shape and determine the apparent Rh of the swollen and de-swollen states. Initial microgel synthesis revealed a dependence of Rh on microgel concentration in samples, requiring a correction for infinite sample dilution during analysis. Increasing DVS:HPC ratio from 1 to 30 causes Rh to decrease from 150 to 190 nm at 25 °C, and from 65 to 95 nm at 50 °C. Ratios from 40 to 50 resulted in swelling from 70 nm at 25 °C to 165 nm at 50 °C. At a ratio of 60, an apparent bulk gelation occurred. The increase in DVS:HPC ratio allowed for the controlled synthesis of more compact microgels that display reversible temperature controlled deswelling. However, at ratios above 30, particles were found to grow in size above the transition temperature. 
    more » « less
  5. Abstract Molecular structuring of soft matter with precise arrangements over multiple hierarchical levels, especially on polymer surfaces, and enabling their post‐synthetic modulation has tremendous potential for application in molecular engineering and interfacial science. Here, recent research and developments in design strategies for structurally controlled polymer surfaces via cyclophane‐based chemical vapor deposition (CVD) polymerization with precise control over chemical functionalities and post‐CVD fabrication via orthogonal surface functionalization that facilitates the formation of designable biointerfaces are summarized. Particular discussion about innovative approaches for the templated synthesis of shape‐controlled CVD polymers, ranging from 1D to 3D architecture, including inside confined nanochannels, nanofibers/nanowires synthesis into an anisotropic media such as liquid crystals, and CVD polymer nanohelices via hierarchical chirality transfer across multiple length scales is provided. Aiming at multifunctional polymer surfaces via CVD copolymerization of multiple precursors, the structural and functional design of the fundamental [2.2]paracyclophane (PCP) precursor molecules, that is, functional CVD monomer chemistry is also described. Technologically advanced and innovative surface deposition techniques toward topological micro‐ and nanostructuring, including microcontact printing, photopatterning, photomask, and lithographic techniques such as dip‐pen nanolithography, showcasing research from the authors’ laboratories as well as other's relevant important findings in this evolving field are highlighted that have introduced new programmable CVD polymerization capabilities. Perspectives, current limitations, and future considerations are provided. 
    more » « less