Abstract This work develops the Polyolefin Active‐Ester Exchange (PACE) process to afford well‐defined polyolefin–polyvinyl block copolymers. α‐Diimine PdII‐catalyzed olefin polymerizations were investigated through in‐depth kinetic studies in comparison to an analog to establish the critical design that facilitates catalyst activation. Simple transformations lead to a diversity of functional groups forming polyolefin macroinitiators or macro‐mediators for various subsequent controlled polymerization techniques. Preparation of block copolymers with different architectures, molecular weights, and compositions was demonstrated with ring‐opening polymerization (ROP), nitroxide‐mediated polymerization (NMP), and photoiniferter reversible addition–fragmentation chain transfer (PI‐RAFT). The significant difference in the properties of polyolefin–polyacrylamide block copolymers was harnessed to carry out polymerization‐induced self‐assembly (PISA) and study the nanostructure behaviors.
more »
« less
Dynamic Worm-Gel Materials as Tunable, Regenerable Adsorbents for Water Treatment
Introducing facile regenerability into adsorbent materials can potentially increase sustainability in water treatment systems enabled by extended use. Herein, we detail our recent syntheses of dynamic nanostructured worm-gel materials and their implementation as regenerable adsorbents for water treatment. Photo-controlled atom transfer radical polymerization-induced self-assembly (PhotoATR-PISA) was employed to synthesize various polymer nanostructures, including dispersed spheres, worms, and vesicles, and nanostructured worm-gels, via the synthesis and simultaneous in situ assembly of BAB triblock copolymers. Two dynamic, disulfide-functionalized macroinitiators (SS-MI-1 and 2)with different degree of polymerization and one nondynamic macroinitiator (CC-MI) were synthesized via polymerization of oligo(ethylene glycol methyl ether methacrylate) (OEGMA). PhotoATR-PISA was then implemented via the chain extension fromSS-MI-1, 2 and CC-MI with glycidyl methacrylate (GMA) or benzyl methacrylate (BMA) forming BAB-type triblock copolymer nanoparticles in situ. The final morphology in PhotoATR-PISA was influenced not only by conventional factors such as solids content and block DP but also by unimer exchange rates yielding arrested, nanostructured worm-gels in many instances and arrested vesicle-gels in one instance. These PISA-gel materials were implemented as adsorbents for phenanthrene, a model compound registered as a priority pollutant by the US EPA, from aqueous solutions. The chemical tunability of these materials enabled enhanced, targeted removal of phenanthrene facilitated by π−π interactions, as evidenced by the increased adsorption capacities of PBMA-based PISA-gels when compared to PGMA. Furthermore, the dynamicity of disulfide worm-gels (SS-WG) enabled disulfide exchange-induced regeneration stimulated by UV light. This UV-responsive exchange was investigated for POEGMA macroinitiators as well as dissolved triblock copolymers, dispersed nanoparticles, and SS-WG materials. Finally, the regenerability of the PNT-saturated SS-WG adsorbents induced by UV irradiation (λ = 365 nm) was examined and compared with control worm-gels absent of disulfides, demonstrating enhanced recovery of adsorption capacity under mild irradiation conditions.
more »
« less
- Award ID(s):
- 2125727
- PAR ID:
- 10536423
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- Macromolecules
- Volume:
- 57
- Issue:
- 2
- ISSN:
- 0024-9297
- Page Range / eLocation ID:
- 628 to 639
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Catalytic Halogen Exchange in Miniemulsion ARGET ATRP: A Pathway to Well‐Controlled Block CopolymersAbstract Halogen exchange in atom transfer radical polymerization (ATRP) is an efficient way to chain‐extend from a less active macroinitiator (MI) to a more active monomer. This has been previously achieved by using CuCl/L in the equimolar amount to Pn−Br MI in the chain extension step. However, this approach cannot be effectively applied in systems based on regeneration of activators (ARGET ATRP), since they operate with ppm amounts of catalysts. Herein, a catalytic halogen exchange procedure is reported using a catalytic amount of Cu in miniemulsion ARGET ATRP to chain‐extend from a less active poly(n‐butyl acrylate) (PBA) MI to a more active methyl methacrylate (MMA) monomer. Influence of different reagents on the initiation efficiency and dispersity is studied. Addition of 0.1mNaCl or tetraethylammonium chloride to ATRP of MMA initiated by methyl 2‐bromopropionate leads to high initiation efficiency and polymers with low dispersity. The optimized conditions are then employed in chain extension of PBA MI with MMA to prepare diblock and triblock copolymers.more » « less
-
Abstract There is a considerable body of work that describes the scaling of diblock copolymer micelle dimensions in dilute and semi‐dilute solution based upon block degrees of polymerization and copolymer concentration. However, there is a lack of analogous information for semi‐dilute ABA triblock copolymer gels, which consist of ABA triblock copolymer dissolved in midblock‐selective (B‐selective) solvent. The present study uses small angle X‐ray scattering to extract micelle dimensions for numerous triblock copolymer gels that vary in copolymer identity (and hence block lengths) and copolymer concentration, as well as gels that contain various ratios of two unique triblock copolymers. Analysis of micelle structural data subsequently translates to universal scaling expressions for the micelle core radius –rA≈NA0.53NB−0.14ϕABA0.16whereNAandNBare the endblock and midblock degrees of polymerization, respectively, andϕABAis the volume fraction of triblock copolymer in the gel – and for the intermicelle spacing –lAA≈NA0.09NB0.29ϕABA−0.35. Each scaling expression describes the full collection of experimental data very well. Additionally, these scaling expressions are partially in line with expectations from semi‐dilute diblock copolymer solution theory.more » « less
-
Smart, multi-stimuli-responsive nanogels that possess dynamic covalent bonds (DCBs) exhibit reversibility under equilibrium conditions allowing for controlled disassembly and release of cargo. These nanomaterials have innumerable applications in areas including drug delivery, sensors, soft actuators, smart surfaces, and environmental remediation. In this work, we implement one-pot, photo-controlled atom transfer radical polymerization-induced self-assembly (PhotoATR-PISA), mediated by UV light (λ = 365 nm) and parts per million (ppm) levels (ca. <20 ppm) of a copper(II) bromide catalyst, to fabricate dual crosslinked, polymeric nanogels with tunable orthogonal reversible covalent (TORC-NGs) core-crosslinks (CCLs). These TORC-NGs were crosslinked efficiently via coumarin photodimerization which occured simultaneously during polymerization using coumarin-functionalized methacrylate crosslinkers (CouMA). At the same time, crosslinking of nanocarriers with N,N-cystamine bismethacrylamide (CBMA) introduced orthogonal, redox-responsive, disulfide CCLs. Furthermore, incorporation of poly(glycidyl methacrylate) (PGMA) core-forming segments provided a simple handle for switchable solubility through acid-catalyzed ring-opening hydrolysis of pendant epoxide groups. In this way, the kinetics of release were tailored by the pH of the surrounding media. Thus, these TORC-NG systems showed coupled pH-, redox- and photo-responsive controlled release and disassembly behavior with full release of cargo only observed in the right sequence of stimuli and only when all three are utilized. The multi-stimuli-responsive nature of these TORC-NGs was successfully utilized herein for the controlled encapsulation and on-demand AND-gate release of hydrophobic Nile Red fluorescent reporters used as drug simulants. Various TORC-NG morphologies were synthesized in this report including nanosphere, worm-like and tubesome NGs showing variable release characteristics.more » « less
-
Abstract Practical synthesis of polyolefin–polyvinyl block copolymers remains a challenge for transition‐metal catalyzed polymerizations. Common approaches functionalize polyolefins for post‐radical polymerization via insertion methods, yet sacrifice the livingness of the olefin polymerization. This work identifies an orthogonal radical/spin coupling technique which affords tandem living insertion and controlled radical polymerization. The broad tolerance of this coupling technique has been demonstrated for diverse radical/spin traps such as 2,2,5‐trimethyl‐4‐phenyl‐3‐azahexane‐3‐nitroxide (TIPNO), 1‐oxyl‐(2,2,6,6‐tetramethylpiperidine) ‐4‐yl‐α‐bromoisobutyrate (TEMPO‐Br), andN‐tert‐butyl‐α‐phenylnitrone (PBN). Subsequent controlled radical polymerization is demonstrated with nitroxide‐mediated polymerization (NMP) and atom transfer radical polymerization (ATRP), yielding polyolefin–polyvinyl di‐ and triblock copolymers (Đ<1.3) with acrylic, vinylic and styrenic segments. These findings highlight radical trapping as an approach to expand the scope of polyolefin‐functionalization techniques to access polyolefin macroinitiators.more » « less