skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On efficient asymptotic modelling of thin films on thermally conductive substrates
We consider a free-surface thin film placed on a thermally conductive substrate and exposed to an external heat source in a set-up where the heat absorption depends on the local film thickness. Our focus is on modelling film evolution while the film is molten. The evolution of the film modifies local heat flow, which in turn may influence the film surface evolution through thermal variation of the film's material properties. Thermal conductivity of the substrate plays an important role in determining the heat flow and the temperature field in the evolving film and in the substrate itself. In order to reach a tractable formulation, we use asymptotic analysis to develop a novel thermal model that is accurate, computationally efficient, and that accounts for the heat flow in both the in-plane and out-of-plane directions. We apply this model to metal films of nanoscale thickness exposed to heating and melting by laser pulses, a set-up commonly used for self and directed assembly of various metal geometries via dewetting while the films are in the liquid phase. We find that thermal effects play an important role, and in particular that the inclusion of temperature dependence in the metal viscosity modifies the time scale of the evolution significantly. On the other hand, in the considered set-up the Marangoni (thermocapillary) effect turns out to be insignificant.  more » « less
Award ID(s):
1815613
PAR ID:
10351671
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
915
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This work focuses on the nature of magnetic anisotropy in 2.5–16 micron thick films of nickel ferrite (NFO) grown by liquid phase epitaxy (LPE). The technique, ideal for rapid growth of epitaxial oxide films, was utilized for films on (100) and (110) substrates of magnesium gallate (MGO). The motivation was to investigate the dependence of the growth induced anisotropy field on film thickness since submicron films of NFO were reported to show a very high anisotropy. The films grown at 850–875 C and subsequently annealed at 1000 C were found to be epitaxial, with the out-of-plane lattice constant showing unanticipated decrease with increasing film thickness and the estimated in-plane lattice constant increasing with the film thickness. The uniaxial anisotropy field H σ , estimated from X-ray diffraction data, ranged from 2.8–7.7 kOe with the films on (100) MGO having a higher H σ value than for the films on (110) MGO. Ferromagnetic resonance (FMR) measurements for in-plane and out-of-plane static magnetic field were utilized to determine both the magnetocrystalline the anisotropy field H 4 and the uniaxial anisotropy field H a . Values of H 4 range from −0.24 to −0.86 kOe. The uniaxial anisotropy field H a was an order of magnitude smaller than H σ and it decreased with increasing film thickness for NFO films on (100) MGO, but H a increased with film thickness for films on (110) MGO substrates. These observations indicate that the origin of the induced anisotropy could be attributed to several factors including (i) strain due to mismatch in the film-substrate lattice constants, (ii) possible variations in the bond lengths and bond angles in NFO during the growth process, and (iii) the strain arising from mismatch in the thermal expansion coefficients of the film and the substrate due to the high growth and annealing temperatures involved in the LPE technique. The LPE films of NFO on MGO substrates studied in this work are of interest for use in high frequency devices. 
    more » « less
  2. null (Ed.)
    Metal films of nanoscale thickness, deposited on substrates and exposed to laser heating, provide systems that involve several interesting multiphysics effects. In addition to fluid mechanical aspects associated with a free boundary setup, other relevant physical effects include phase change, thermal flow, and liquid–solid interactions. Such films are challenging to model, in particular because inertial effects may be relevant, and large contact angles require care when considering the long-wave formulation. Applications of nanoscale metal films are numerous, and the materials science community is actively pursuing more complex setups involving templated films and substrates, bimetallic films and alloys, and a variety of elemental film geometries. The goal of this review is to discuss our current understanding of thin metal film systems, while also providing an overview of the challenges in this research area, which stands at the intersection of fluid mechanics, materials science, and thermal physics. 
    more » « less
  3. Perovskite materials, of which strontium titanate (STO) and its thin films are an example, have attracted significant scientific interest because of their desirable properties and the potential to tune thermal conductivity by employing several techniques. Notably, strontium titanate thin films on silicon (Si) substrates serve as a fundamental platform for integrating various oxides onto Si substrates, making it crucial to understand the thermal properties of STO on Si. This work investigates the thermal conductivity of STO thin films on an Si substrate for varying film thicknesses (12, 50, 80, and 200 nm) at room temperature (∼300 K). The thin films are deposited using molecular beam epitaxy on the Si substrate and their thermal conductivity is characterized using the frequency domain thermoreflectance (FDTR) method. The measured values range from 7.4 ± 0.74 for the 200 nm thick film to 0.8 ± 0.1 W m−1 K−1 for the 12 nm thick film, showing a large effect of the film thickness on the thermal conductivity values. The trend of the values is diminishing with the corresponding decrease in the thin film thickness, with a reduction of 38%–93% in the thermal conductivity values, for film thicknesses ranging from 200 to 12 nm. This reduction in the values is relative to the bulk single crystal values of STO, which may range from 11 to 13.5 W m−1 K−1 [Yu et al., Appl. Phys. Lett. 92, 191911 (2008) and Fumega et al., Phys. Rev. Mater. 4, 033606 (2020)], as measured by our FDTR-based experiment. The study also explores the evaluation of volumetric heat capacity (Cp). The measured volumetric heat capacity for the 200 nm thin film is 3.07 MJ m−3 K−1, which is in reasonable agreement with the values available in the literature. 
    more » « less
  4. Abstract Heat transport in nanoscale carbon materials such as carbon nanotubes and graphene is normally dominated by phonons. Here, measurements of in‐plane thermal conductivity, electrical conductivity, and thermopower are presented from 77–350 K on two films with thickness <100 nm formed from semiconducting single‐walled carbon nanotubes. These measurements are made with silicon–nitride membrane thermal isolation platforms. The two films, formed from disordered networks of tubes with differing tube and bundle size, have very different thermal conductivity. One film matches a simple model of heat conduction assuming constant phonon velocity and mean free path, and 3D Debye heat capacity with a Debye temperature of 770 K. The second film shows a more complicated temperature dependence, with a dramatic drop in a relatively narrow window near 200 K where phonon contributions to thermal conductivity essentially vanish. This causes a corresponding large increase in thermoelectric figure‐of‐merit at the same temperature. A better understanding of this behavior can allow significant improvement in thermoelectric efficiency of these low‐cost earth‐abundant, organic electronic materials. Heat and charge conductivity near room temperature is also presented as a function of doping, which provides further information on the interaction of dopant molecules and phonon transport in disordered nanotube films. 
    more » « less
  5. This report is on the nature of strain in thin films of yttrium iron garnet (YIG) on yttrium aluminum garnet (YAG) substrates due to film-substrate lattice mismatch and the resulting induced magnetic anisotropy. Films with thickness 55 nm to 380 nm were deposited on (100), (110), and (111) YAG substrates using pulsed laser deposition (PLD) techniques and characterized by structural and magnetic characterization techniques. The in-plane strain determined to be compressive using X-ray diffraction (XRD). It varied from −0.12% to −0.98% and increased in magnitude with increasing film thickness and was relatively large in films on (100) YAG. The out-of-plane strain was tensile and also increased with increasing film thickness. The estimated strain-induced magnetic anisotropy field, found from XRD data, was out of plane; its value increased with film thickness and ranged from 0.47 kOe to 3.96 kOe. Ferromagnetic resonance (FMR) measurements at 5 to 21 GHz also revealed the presence of a perpendicular magnetic anisotropy that decreased with increasing film thickness and its values were smaller than values obtained from XRD data. The PLD YIG films on YAG substrates exhibiting a perpendicular anisotropy field have the potential for use in self-biased sensors and high-frequency devices. 
    more » « less