skip to main content


Title: Disciplinary Leaders Perceptions of Ethics: An Interview-Based Study of Ethics Frameworks Paper ID #37843
Understanding institutional leaders’ perspectives on ethics frameworks can help us better conceptualize where, how, and for whom ethics is made explicit across and within STEM related disciplines and, in turn, to better understand the ways developing professionals are enculturated toward responsibility within their disciplines. As part of an NSF-funded institutional transformation project, our research team conducted interviews with academic leaders about the frameworks of ethics in their home departments, programs, and fields. This paper reports on a series of eleven (11) interviews whose content describes the perspectives of disciplinary leaders from biology, chemistry, computer science, mathematics, mechanical and aerospace engineering, optics, philosophy, physics, psychology, STEM education, and writing and rhetoric. Contextualizing frameworks through the participants’ identification of experience, content, and audience allows us to better understand the landscape of ethics practices and procedures that act as the explicit training and education STEM learners receive in their disciplines. If ethics is an important educational focus for engineering, and the work of engineering relies on interdisciplinary connections, then understanding how ethics is taken up both within and across those collaborating disciplines is an important means of supporting ethics in engineering.  more » « less
Award ID(s):
2024296
NSF-PAR ID:
10351725
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ASEE 2022
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. What responsibility do faculty leaders have to understand the ethics frameworks of their faculty colleagues? To what extent do leaders have capacity to enact that responsibility, given constraints on curricular space, expertise, basic communication skills, and the political climate? The landscape of disciplinary ethics frameworks, or the value content and structured experiences that shape professional development and disciplinary enculturation, reaches wide across the curriculum and deep into the discipline [1][2][3]. This landscape might include frameworks ranging from accrediting bodies and institutional compliance structures to state and national laws and departmental cultures. Coupled to the diversity of specializations within a single discipline, this landscape is richly complex. Yet, faculty leaders play important roles in shaping departmental and programmatic cultures, which are at least partially informed by the disciplinary value landscape. The objective of this paper is to build on previous work [4] to explore this problem of faculty leader responsibility by contrasting faculty leaders’ perspectives on disciplinary values with the values evidenced by their professional organizations. To evidence this contrast, we compare data from interviews with faculty leaders in departments of biology and computer science at a large metropolitan high research intensive HSI-serving university against data scraped from the websites of professional organizations those leaders reference as ethics frameworks. We analyze both sets of data using content analytics methods to examine qualitative and quantitative differences between them. This comparison is part of a larger institutional study looking at this problem across a wide diversity of disciplines [5]. We find an anticipated disparity between identification of the disciplinary frameworks and their content, opening space for discussion about the impact of national ethics frameworks at the local disciplinary level. But we also find an unanticipated diversity of types of ethics frameworks identified by faculty leaders, demonstrating the complexity of just how value frameworks inform disciplinary enculturation through leadership and training. Based on our findings, we articulate the relationship between responsibility and accountability [6] in the process of values-driven disciplinary enculturation. This work is relevant to ethics in that if ethics frameworks and the values they encode play a role in disciplinary enculturation, and there is a disconnect between faculty leaders perceptions of ethics frameworks and their disciplines explicit communications of their values, then the processes and practices of disciplinary enculturation could be more tightly connected to disciplinary values – resulting in more richly ethical professionals. *note: a version of this abstract is also submitted concurrently as a presentation to the Association of Practical and Professional Ethics (APPE), which does not publish abstracts or proceedings papers. [1] Tuana, Nancy. 2013. “Embedding Philosophers in the Practices of Science: Bringing Humanities to the Sciences.” Synthese 190(11): 1955-1973. [2] West, C. and Chur-Hansen, A. (2004). Ethical Enculturation: The Informal and Hidden Ethics Curricula at an Australian Medical School. Focus on Health Professional Education: a Multi-Disciplinary Journal 6(1): 85-99. [3] Nieusma, D. and Cieminski, M. (2018). Ethics Education as Enculturation: Student Learning of Personal, Social, and Professional Responsibility. 2018 ASEE Annual Conference and Exposition. Paper 23665. [4] Pinkert, L.A., Taylor, L., Beever, J., Kuebler, S.M., Klonoff, E. (2022). Disciplinary Leaders Perceptions of Ethics: An Interview-Based Study of Ethics Frameworks. 2022 ASEE Annual Conference and Exposition. https://peer.asee.org/41614. [5] National Science Foundation, “Award Abstract # 2024296 Institutional Transformation: Intersections of Moral Foundations and Ethics Frameworks in STEM Enculturation.” https://www.nsf.gov/awardsearch/showAward?AWD_ID=2024296, 2020. 
    more » « less
  2. This research paper focuses on the effect of recent national events on first-year engineering students’ attitudes about their political identity, social welfare, perspectives of diversity, and approaches to social situations. Engineering classrooms and cultures often focus on mastery of content and technical expertise with little prioritization given to integrating social issues into engineering. This depoliticization (i.e., the removal of social issues) in engineering removes the importance of issues related to including diverse individuals in engineering, working in diverse teams, and developing cultural sensitivity. This study resulted from the shift in the national discourse, during the 2016 presidential election, around diversity and identities in and out of the academy. We were collecting interview data as a part of a larger study on students attitudes about diversity in teams. Because these national events could affect students’ perceptions of our research topic, we changed a portion of our interviews to discuss national events in science, technology, engineering, and mathematics (STEM) classrooms and how students viewed these events in relation to engineering. We interviewed first-year undergraduate students (n = 12) who indicated large differences of attitudes towards diverse individuals, experiences with diverse team members, and/or residing at the intersection of multiple diversity markers. We asked participants during the Spring of 2017 to reflect on the personal impact of recent national events and how political discussions have or have not been integrated into their STEM classrooms. During interviews students were asked: 1) Have recent national events impacted you in any way? 2) Have national events been discussed in your STEM classes? 3) If so, what was discussed and how was it discussed? 4) Do these conversations have a place in STEM classes? 5) Are there events you wish were discussed that have not been? Inductive coding was used to analyze interviews and develop themes that were audited for quality by the author team. Two preliminary themes emerged from analysis: political awareness and future-self impact. Students expressed awareness of current political events at the local, national and global levels. They recognized personal and social impacts that these events imposed on close friends, family members, and society. However, students were unsure of how to interpret political dialogue as it relates to policy in engineering disciplines and practices. This uncertainty led students to question their future-selves or careers in engineering. As participants continued to discuss their uncertainty, they expressed a desire to make explicit connections between politics and STEM and their eventual careers in STEM. These findings suggest that depoliticization in the classroom results in engineering students having limited consciousness of how political issues are relevant to their field. This disconnect of political discourse in the classroom gives us a better understanding of how engineering students make sense of current national events in the face of depoliticization. By re-politicising STEM classrooms in a way relevant to students’ futures, educators can better utilize important dialogues to help students understand how their role as engineers influence society and how the experiences of society can influence their practice of engineering. 
    more » « less
  3. This presentation reports on four interviews with faculty leaders across STEM disciplines at a single institution of higher education. The interviews evidence important overlap and divergence in the perceptions of the roles that disciplinary frameworks play in STEM enculturation. Further, they suggest variance in the perceived nature and scope of ethics across disciplines. The presentation argues that this divergence has implications for institutional cultures of ethics, notions of professional responsibility, and participation in team-based science. 
    more » « less
  4. Introduction and Theoretical Frameworks Our study draws upon several theoretical foundations to investigate and explain the educational experiences of Black students majoring in ME, CpE, and EE: intersectionality, critical race theory, and community cultural wealth theory. Intersectionality explains how gender operates together with race, not independently, to produce multiple, overlapping forms of discrimination and social inequality (Crenshaw, 1989; Collins, 2013). Critical race theory recognizes the unique experiences of marginalized groups and strives to identify the micro- and macro-institutional sources of discrimination and prejudice (Delgado & Stefancic, 2001). Community cultural wealth integrates an asset-based perspective to our analysis of engineering education to assist in the identification of factors that contribute to the success of engineering students (Yosso, 2005). These three theoretical frameworks are buttressed by our use of Racial Identity Theory, which expands understanding about the significance and meaning associated with students’ sense of group membership. Sellers and colleagues (1997) introduced the Multidimensional Model of Racial Identity (MMRI), in which they indicated that racial identity refers to the “significance and meaning that African Americans place on race in defining themselves” (p. 19). The development of this model was based on the reality that individuals vary greatly in the extent to which they attach meaning to being a member of the Black racial group. Sellers et al. (1997) posited that there are four components of racial identity: 1. Racial salience: “the extent to which one’s race is a relevant part of one’s self-concept at a particular moment or in a particular situation” (p. 24). 2. Racial centrality: “the extent to which a person normatively defines himself or herself with regard to race” (p. 25). 3. Racial regard: “a person’s affective or evaluative judgment of his or her race in terms of positive-negative valence” (p. 26). This element consists of public regard and private regard. 4. Racial ideology: “composed of the individual’s beliefs, opinions and attitudes with respect to the way he or she feels that the members of the race should act” (p. 27). The resulting 56-item inventory, the Multidimensional Inventory of Black Identity (MIBI), provides a robust measure of Black identity that can be used across multiple contexts. Research Questions Our 3-year, mixed-method study of Black students in computer (CpE), electrical (EE) and mechanical engineering (ME) aims to identify institutional policies and practices that contribute to the retention and attrition of Black students in electrical, computer, and mechanical engineering. Our four study institutions include historically Black institutions as well as predominantly white institutions, all of which are in the top 15 nationally in the number of Black engineering graduates. We are using a transformative mixed-methods design to answer the following overarching research questions: 1. Why do Black men and women choose and persist in, or leave, EE, CpE, and ME? 2. What are the academic trajectories of Black men and women in EE, CpE, and ME? 3. In what way do these pathways vary by gender or institution? 4. What institutional policies and practices promote greater retention of Black engineering students? Methods This study of Black students in CpE, EE, and ME reports initial results from in-depth interviews at one HBCU and one PWI. We asked students about a variety of topics, including their sense of belonging on campus and in the major, experiences with discrimination, the impact of race on their experiences, and experiences with microaggressions. For this paper, we draw on two methodological approaches that allowed us to move beyond a traditional, linear approach to in-depth interviews, allowing for more diverse experiences and narratives to emerge. First, we used an identity circle to gain a better understanding of the relative importance to the participants of racial identity, as compared to other identities. The identity circle is a series of three concentric circles, surrounding an “inner core” representing one’s “core self.” Participants were asked to place various identities from a provided list that included demographic, family-related, and school-related identities on the identity circle to reflect the relative importance of the different identities to participants’ current engineering education experiences. Second, participants were asked to complete an 8-item survey which measured the “centrality” of racial identity as defined by Sellers et al. (1997). Following Enders’ (2018) reflection on the MMRI and Nigrescence Theory, we chose to use the measure of racial centrality as it is generally more stable across situations and best “describes the place race holds in the hierarchy of identities an individual possesses and answers the question ‘How important is race to me in my life?’” (p. 518). Participants completed the MIBI items at the end of the interview to allow us to learn more about the participants’ identification with their racial group, to avoid biasing their responses to the Identity Circle, and to avoid potentially creating a stereotype threat at the beginning of the interview. This paper focuses on the results of the MIBI survey and the identity circles to investigate whether these measures were correlated. Recognizing that Blackness (race) is not monolithic, we were interested in knowing the extent to which the participants considered their Black identity as central to their engineering education experiences. Combined with discussion about the identity circles, this approach allowed us to learn more about how other elements of identity may shape the participants’ educational experiences and outcomes and revealed possible differences in how participants may enact various points of their identity. Findings For this paper, we focus on the results for five HBCU students and 27 PWI students who completed the MIBI and identity circle. The overall MIBI average for HBCU students was 43 (out of a possible 56) and the overall MIBI scores ranged from 36-51; the overall MIBI average for the PWI students was 40; the overall MIBI scores for the PWI students ranged from 24-51. Twenty-one students placed race in the inner circle, indicating that race was central to their identity. Five placed race on the second, middle circle; three placed race on the third, outer circle. Three students did not place race on their identity circle. For our cross-case qualitative analysis, we will choose cases across the two institutions that represent low, medium and high MIBI scores and different ranges of centrality of race to identity, as expressed in the identity circles. Our final analysis will include descriptive quotes from these in-depth interviews to further elucidate the significance of race to the participants’ identities and engineering education experiences. The results will provide context for our larger study of a total of 60 Black students in engineering at our four study institutions. Theoretically, our study represents a new application of Racial Identity Theory and will provide a unique opportunity to apply the theories of intersectionality, critical race theory, and community cultural wealth theory. Methodologically, our findings provide insights into the utility of combining our two qualitative research tools, the MIBI centrality scale and the identity circle, to better understand the influence of race on the education experiences of Black students in engineering. 
    more » « less
  5. Engineering education researchers have identified a lack of alignment between the complexities of professional engineering contexts and the ways that we train and evaluate the ethical abilities and dispositions of engineers preparing for professional practice. The challenges that engineers face as practitioners are multifaceted, wicked problems situated in unique and varied disciplinary and industry contexts. Understanding the variations in ways of experiencing ethics by practicing engineers in these complex professional contexts will support a better alignment between engineering ethics instruction and what students might experience in professional practice. While there is a need for richer and more contextually-specific ethics training for many areas, our initial focus is the healthcare products industry. Thus, our NSF-funded CCE STEM project will enable us to analyze the alignment of relationships among frameworks for ethics education in engineering and the reality of engineering practice within the health products industry. As a first phase, the project has focused on understanding the different ways in which practicing engineers experience ethical issues in the health products industry using phenomenography, an empirical research methodology for investigating qualitatively different ways people experience a phenomenon. In the second phase, we have analyzed critical incidents that potentially cause the variation in experiencing ethics in practice. The findings of these studies are anticipated to serve as a guidepost for aligning educational strategies and developing effective training for future ethical practitioners. In our paper, we present an overview of the study (background and methods), progress to date, and how we expect the results to inform engineering ethics education and industry ethics training. 
    more » « less