skip to main content


Title: Order to disorder in quasiperiodic composites
Abstract From quasicrystalline alloys to twisted bilayer graphene, the study of material properties arising from quasiperiodic structure has driven advances in theory and applied science. Here we introduce a class of two-phase composites, structured by deterministic Moiré patterns, and we find that these composites display exotic behavior in their bulk electrical, magnetic, diffusive, thermal, and optical properties. With a slight change in the twist angle, the microstructure goes from periodic to quasiperiodic, and the transport properties switch from those of ordered to randomly disordered materials. This transition is apparent when we distill the relationship between classical transport coefficients and microgeometry into the spectral properties of an operator analogous to the Hamiltonian in quantum physics. We observe this order to disorder transition in terms of band gaps, field localization, and mobility edges analogous to Anderson transitions — even though there are no wave scattering or interference effects at play here.  more » « less
Award ID(s):
1715680 2206171
NSF-PAR ID:
10351777
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Communications Physics
Volume:
5
Issue:
1
ISSN:
2399-3650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With recent technological advances, quasiperiodic and aperiodic materials present a novel class of metamaterials that possess very unusual, extraordinary properties such as superconductivity, unusual mechanical properties and diffraction patterns, extremely low thermal conductivity, etc. As all these properties critically depend on the microgeometry of the media, the methods that allow characterizing the effective properties of such materials are of paramount importance. In this paper, we analyze the effective properties of a class of multiscale composites consisting of periodic and quasiperiodic phases appearing at different scales. We derive homogenized equations for the effective behavior of the composite and discover a variety of new effects which could have interesting applications in the control of wave and diffusion phenomena. 
    more » « less
  2. In the presence of Lewis acid salts, the cyclic ether, dioxolane (DOL), is known to undergo ring-opening polymerization inside electrochemical cells to form solid-state polymer batteries with good interfacial charge-transport properties. Here we report that LiNO3, which is unable to ring-open DOL, possesses a previously unknown ability to coordinate with and strain DOL molecules in bulk liquids, completely arresting their crystallization. The strained DOL electrolytes exhibit physical properties analogous to amorphous polymers, including a prominent glass transition, elevated moduli, and low activation entropy for ion transport, but manifest unusually high, liquidlike ionic conductivities (e.g., 1 mS/cm) at temperatures as low as −50 °C. Systematic electrochemical studies reveal that the electrolytes also promote reversible cycling of Li metal anodes with high Coulombic efficiency (CE) on both conventional planar substrates (1 mAh/cm2over 1,000 cycles with 99.1% CE; 3 mAh/cm2over 300 cycles with 99.2% CE) and unconventional, nonplanar/three-dimensional (3D) substrates (10 mAh/cm2over 100 cycles with 99.3% CE). Our finding that LiNO3promotes reversibility of Li metal electrodes in liquid DOL electrolytes by a physical mechanism provides a possible solution to a long-standing puzzle in the field about the versatility of LiNO3salt additives for enhancing reversibility of Li metal electrodes in essentially any aprotic liquid electrolyte solvent. As a first step toward understanding practical benefits of these findings, we create functional Li||lithium iron phosphate (LFP) batteries in which LFP cathodes with high capacity (5 to 10 mAh/cm2) are paired with thin (50 μm) lithium metal anodes, and investigate their galvanostatic electrochemical cycling behaviors.

     
    more » « less
  3. Context. The formation of molecular gas in interstellar clouds is a slow process, but can be enhanced by gas compression. Magneto-hydrodynamic (MHD) waves can create compressed quasi-periodic linear structures, referred to as striations. Striations are observed at the column densities at which the transition from atomic to molecular gas takes place. Aims. We explore the role of MHD waves in the CO chemistry in regions with striations within molecular clouds. Methods. We targeted a region with striations in the Polaris Flare cloud. We conducted a CO J = 2−1 survey in order to probe the molecular gas properties. We used archival starlight polarization data and dust emission maps in order to probe the magnetic field properties and compare against the CO morphological and kinematic properties. We assessed the interaction of compressible MHD wave modes with CO chemistry by comparing their characteristic timescales. Results. The estimated magnetic field is 38–76 µG. In the CO integrated intensity map, we observe a dominant quasiperiodic intensity structure that tends to be parallel to the magnetic field orientation and has a wavelength of approximately one parsec. The periodicity axis is ~17° off from the mean magnetic field orientation and is also observed in the dust intensity map. The contrast in the CO integrated intensity map is ~2.4 times higher than the contrast of the column density map, indicating that CO formation is enhanced locally. We suggest that a dominant slow magnetosonic mode with an estimated period of 2.1–3.4 Myr and a propagation speed of 0.30–0.45 km s −1 is likely to have enhanced the formation of CO, hence created the observed periodic pattern. We also suggest that within uncertainties, a fast magnetosonic mode with a period of 0.48 Myr and a velocity of 2.0 km s −1 could have played some role in increasing the CO abundance. Conclusions. Quasiperiodic CO structures observed in striation regions may be the imprint of MHD wave modes. The Alfvénic speed sets the dynamical timescales of the compressible MHD modes and determines which wave modes are involved in the CO chemistry. 
    more » « less
  4. Abstract

    While progress has been made in the design of organic semiconductors (OSCs) with improved transport properties, the understanding of the mechanisms involved is still limited, hindering further development. In this study, the interplay between structural order and transport considering one single OSC, analogous to past research on silicon is investigated. Rubrene (C42H28) is selected as it spans transport mechanisms from thermally activated hopping in its amorphous form to band‐like in highly ordered crystals in the orthorhombic polymorph. Transport characterizations including variable temperature conductivity, advanced Hall effect, and magnetoresistance measurements are performed on rubrene films with varying levels of order (polycrystalline vs amorphous), crystal phase (orthorhombic vs triclinic), and morphologies (platelet‐like vs spherulitic grains). A conductivity tuning range over four orders of magnitude between polycrystalline (platelet‐like) orthorhombic and amorphous films is reported. As observed in silicon, transport in polycrystalline orthorhombic rubrene is limited by energy barriers at grain boundaries. Additionally, a gradual transition from predominantly band‐like to predominantly hopping transport with increasing disorder, reminiscent of observations in silicon is shown. Nevertheless, OSCs differ from covalently bonded silicon by their weak intermolecular interaction. This study highlights that molecular packing must be optimized in OSCs to favor advantageous π‐orbital overlap and optimized transport properties.

     
    more » « less
  5. Abstract

    Quasiperiodic systems are aperiodic but deterministic, so their critical behavior differs from that of clean systems and disordered ones as well. Quasiperiodic criticality was previously understood only in the special limit where the couplings follow discrete quasiperiodic sequences. Here we consider generic quasiperiodic modulations; we find, remarkably, that for a wide class of spin chains, generic quasiperiodic modulations flow to discrete sequences under a real-space renormalization-group transformation. These discrete sequences are therefore fixed points of a functional renormalization group. This observation allows for an asymptotically exact treatment of the critical points. We use this approach to analyze the quasiperiodic Heisenberg, Ising, and Potts spin chains, as well as a phenomenological model for the quasiperiodic many-body localization transition.

     
    more » « less