skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: FPGA-based assistive framework for smart home automation
This paper proposes a reconfigurable framework to automated reconfigurable secure home system. The proposed system has 3 main features: monitoring controlling of smart home automation through password-protected door lock system, the monitoring controlling of day-to-day electronic devices, fire safety with room temperature monitoring and antitheft system. In this paper, different sensor combinations are to be integrated with the FPGA board. For the Fire safety module, a temperature monitoring sensor has been used that will display the temperature continuously. If the temperature in the room exceeds 60 degree Celsius, then it will turn on the buzzer or alarm for fire safety. For the Anti-theft system, infrared (IR) sensors are fitted in each window. If any unauthorized person tries to breach through the window, both IR sensor signals will be turned ON and the output of the buzzer goes to high. For the door lock system, a finite state machine (FSM) has been implemented. This work focuses on a scalable smart home automation framework using the FPGA board that can be used for integration of multiple sensors in a cost-effective way. The research in this project is focused on processing multiple analog sensor inputs through the FPGA board.  more » « less
Award ID(s):
1924117
PAR ID:
10351831
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE 15th Dallas Circuit And System Conference (DCAS)
Page Range / eLocation ID:
1 to 2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Today, various sensor technologies have been introduced to help people keep track of their daily living activities. For example, a wide range of sensors were integrated in applications to develop a smart home, a mobile emergency response system and a fall detection system. Sensor technologies were also employed in clinical settings for monitoring an early sign or onset of Alzheimer’s diseases, dementia, abnormal sleep disorder, and heart rate problems. However, there has been a lack of attention paid to comprehensive reviews, valuable especially for young, early-career scholars who just developed research interests in this area. This paper reviewed the existing sensor technologies by considering various contexts such as sensor features, data of interests, locations of sensors, and the number of sensors. For instance, sensor technologies provided various features that enabled people to monitor biomechanics of human movement (e.g., walking speed), use of household goods (e.g., switch on/off of home appliances), sounds (e.g., sounds in a particular room), and surrounding environments (e.g., temperature and humidity). Sensor technologies were widely used to examine various data, such as biomarkers for health, dietary habits, leisure activities, and hygiene status. Sensors were installed in various locations to cover wide-open area (e.g., ceilings, wall, and hallway), specific area (e.g., a bedroom and a dining room), and specific objects (e.g., mattresses and windows). Different sets of sensors were employed to keep track of activities of daily living, which ranged from a single sensor to multiple sensors to cover throughout the home. This comprehensive reviews for sensor technology implementations are anticipated to help many researchers and professionals to design, develop, and use sensor technology applications adequately in the target user’s contexts by promoting safety, usability, and accessibility.

     
    more » « less
  2. Many smart home frameworks use applications to automate devices in a smart home. When these applications interact in the same environment, they may cause unintended actions which can lead to a safety violation (e.g., the door is unlocked when the user is not at home). While recent efforts have attempted to address this problem, they do not capture complex app behaviors such as: 1) timed behavior and user inputs (e.g., a door can remain unlocked for a long time because of a lock-door app that locks the door after 𝑥 duration, if 𝑥 is set too large.) and 2) interactions between devices and the environment they implicitly affect (e.g., water sprinklers cannot be turned on if the water supply is off). Hence, prior work leads to many false positives and false negatives. In this paper, we present PSA, a practical framework to identify safety intent violations in a smart home. PSA uses parameterized timed automata (PTA) as an expressive abstraction to model smart apps. To parse these apps into PTA, we define mappings from smart app APIs to equivalent PTA primitives. We also provide toolkits to model devices, environments, and their interactions. We evaluate PSA on 86 apps in the Samsung SmartThings IoT ecosystem. We compare PSA against two state-of-the-art baselines and find: (a) 19 new intent violations and (b) 35% fewer false positives than baselines. 
    more » « less
  3. Sitting is the most common status of modern human beings. Many people are sitting with bad posture which may lead to postural pain. Especially for people with short term-disabilities, sitting in the right posture is very important. In this research, we propose a posture recognition system on an office chair that can categorize different health-related sitting postures to prevent harm from bad sitting postures. The smart chair system consists of an array of five flex sensors integrated into an FPGA board. The output of the system is the classification result of the sitting posture. In this paper, several health-related sitting postures are selected. The sitting postures are: 1-sit straight; 2-left recline; 3-right recline; 4-lounge;5-lean backward; 6-cross left leg; 7-cross right leg. The proposed reconfigurable framework will be integrated as part of smart ambient assisted living with user-centered health monitoring system. 
    more » « less
  4. null (Ed.)
    Smart-home devices promise to make users’ lives more convenient. However, at the same time, such devices increase the possibility of breaching users’ privacy as they are tightly connected to the users’ daily lives and activities. To address privacy invasion through smart-home devices, we present ChatterHub. This novel approach accurately identifies smart-home devices’ activities with minimal monitoring of encrypted traffic in the home network. ChatterHub targets devices that can only connect to the Internet through a centralized smart-home hub (e.g., Samsung SmartThings) using Zigbee or Z-wave. Specifically, ChatterHub passively eavesdrops on encrypted network traffic from the hub and leverages machine learning techniques to classify events and states of smart-home devices. Using ChatterHub, an adversary can identify smart-home devices’ specific activities without prior knowledge of the target smart home (e.g., list of deployed devices, types of communication protocols). We evaluated the accuracy and efficiency of ChatterHub in three real-world smart-home environments, and the evaluation results show that an attacker can successfully disclose smart-home devices’ behaviors with over 88% F1 score. We further demonstrate that ChatterHub successfully recognizes privacy-sensitive activities, including open and close of a smart door lock and turn on and off of smart LED. Additionally, to mitigate the threats posed by ChatterHub, we introduce two approaches, packet padding and random sequence injection. These mitigation approaches can effectively prevent threats from ChatterHub with only 9.2MB of additional network traffic per day. 
    more » « less
  5. This paper focuses on developing a security mechanism geared towards appified smart-home platforms. Such platforms often expose programming interfaces for developing automation apps that mechanize different tasks among smart sensors and actuators (e.g., automatically turning on the AC when the room temperature is above 80 F). Due to the lack of effective access control mechanisms, these automation apps can not only have unrestricted access to the user's sensitive information (e.g., the user is not at home) but also violate user expectations by performing undesired actions. As users often obtain these apps from unvetted sources, a malicious app can wreak havoc on a smart-home system by either violating the user's security and privacy, or creating safety hazards (e.g., turning on the oven when no one is at home). To mitigate such threats, we propose Expat which ensures that user expectations are never violated by the installed automation apps at runtime. To achieve this goal, Expat provides a platform-agnostic, formal specification language UEI for capturing user expectations of the installed automation apps' behavior. For effective authoring of these expectations (as policies) in UEI, Expat also allows a user to check the desired properties (e.g., consistency, entailment) of them; which due to their formal semantics can be easily discharged by an SMT solver. Expat then enforces UEI policies in situ with an inline reference monitor which can be realized using the same app programming interface exposed by the underlying platform. We instantiate Expat for one of the representative platforms, OpenHAB, and demonstrate it can effectively mitigate a wide array of threats by enforcing user expectations while incurring only modest performance overhead. 
    more » « less