skip to main content


Title: Review of Existing Sensors for Tracking the Activities of Daily Living

Today, various sensor technologies have been introduced to help people keep track of their daily living activities. For example, a wide range of sensors were integrated in applications to develop a smart home, a mobile emergency response system and a fall detection system. Sensor technologies were also employed in clinical settings for monitoring an early sign or onset of Alzheimer’s diseases, dementia, abnormal sleep disorder, and heart rate problems. However, there has been a lack of attention paid to comprehensive reviews, valuable especially for young, early-career scholars who just developed research interests in this area. This paper reviewed the existing sensor technologies by considering various contexts such as sensor features, data of interests, locations of sensors, and the number of sensors. For instance, sensor technologies provided various features that enabled people to monitor biomechanics of human movement (e.g., walking speed), use of household goods (e.g., switch on/off of home appliances), sounds (e.g., sounds in a particular room), and surrounding environments (e.g., temperature and humidity). Sensor technologies were widely used to examine various data, such as biomarkers for health, dietary habits, leisure activities, and hygiene status. Sensors were installed in various locations to cover wide-open area (e.g., ceilings, wall, and hallway), specific area (e.g., a bedroom and a dining room), and specific objects (e.g., mattresses and windows). Different sets of sensors were employed to keep track of activities of daily living, which ranged from a single sensor to multiple sensors to cover throughout the home. This comprehensive reviews for sensor technology implementations are anticipated to help many researchers and professionals to design, develop, and use sensor technology applications adequately in the target user’s contexts by promoting safety, usability, and accessibility.

 
more » « less
Award ID(s):
1831969
NSF-PAR ID:
10356213
Author(s) / Creator(s):
Date Published:
Journal Name:
AHFE International
Volume:
52
ISSN:
2771-0718
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    BACKGROUND: Although a number of research studies on sensor technology for smart home environments have been conducted, there is still lack of consideration of human factors in implementing sensor technology in the home of older adults with visual disabilities. OBJECTIVE: This paper aims to advance knowledge of how sensor technology (e.g., Microsoft Kinect) should be implemented in the home of those with visual disabilities. METHODS: A convenience sample of 20 older adults with visual disabilities allowed us to observe their home environments and interview about the activities of daily living, which were analyzed via the inductive content analysis. RESULTS: Sensor technology should be integrated in the living environments of those with visual disabilities by considering various contexts, including people, tasks, tools, and environments (i.e., level-1 categories), which were further broken down into 22 level-2 categories and 28 level-3 categories. Each sub-category included adequate guidelines, which were also sorted by sensor location, sensor type, and data analysis. CONCLUSIONS: The guidelines will be helpful for researchers and professionals in implementing sensor technology in the home of older adults with visual disabilities. 
    more » « less
  2. null (Ed.)
    Abstract Background Unified Parkinson Disease Rating Scale-part III (UPDRS III) is part of the standard clinical examination performed to track the severity of Parkinson’s disease (PD) motor complications. Wearable technologies could be used to reduce the need for on-site clinical examinations of people with Parkinson’s disease (PwP) and provide a reliable and continuous estimation of the severity of PD at home. The reported estimation can be used to successfully adjust the dose and interval of PD medications. Methods We developed a novel algorithm for unobtrusive and continuous UPDRS-III estimation at home using two wearable inertial sensors mounted on the wrist and ankle. We used the ensemble of three deep-learning models to detect UPDRS-III-related patterns from a combination of hand-crafted features, raw temporal signals, and their time–frequency representation. Specifically, we used a dual-channel, Long Short-Term Memory (LSTM) for hand-crafted features, 1D Convolutional Neural Network (CNN)-LSTM for raw signals, and 2D CNN-LSTM for time–frequency data. We utilized transfer learning from activity recognition data and proposed a two-stage training for the CNN-LSTM networks to cope with the limited amount of data. Results The algorithm was evaluated on gyroscope data from 24 PwP as they performed different daily living activities. The estimated UPDRS-III scores had a correlation of $$0.79\, (\textit{p}<0.0001)$$ 0.79 ( p < 0.0001 ) and a mean absolute error of 5.95 with the clinical examination scores without requiring the patients to perform any specific tasks. Conclusion Our analysis demonstrates the potential of our algorithm for estimating PD severity scores unobtrusively at home. Such an algorithm could provide the required motor-complication measurements without unnecessary clinical visits and help the treating physician provide effective management of the disease. 
    more » « less
  3. Designing a Curriculum to Broaden Middle School Students’ Ideas and Interest in Engineering As the 21st century progresses, engineers will play critical roles in addressing complex societal problems such as climate change and nutrient pollution. Research has shown that more diverse teams lead to more creative and effective solutions (Smith-Doerr et al., 2017). However, while some progress has been made in increasing the number of women and people of color, 83% of employed engineers are male and 68% of engineers are white (NSF & NCSES, 2019). Traditional K–12 approaches to engineering often emphasize construction using a trial-and-error approach (ASEE, 2020). Although this approach may appeal to some students, it may alienate other students who then view engineering simply as “building things.” Designing engineering experiences that broaden students’ ideas about engineering, may help diversify the students entering the engineering pipeline. To this end, we developed Solving Community Problems with Engineering (SCoPE), an engineering curriculum that engages seventh-grade students in a three-week capstone project focusing on nutrient pollution in their local watershed. SCoPE engages students with the problem through local news articles about nutrient pollution and images of algae covered lakes, which then drives the investigation into the detrimental processes caused by excess nutrients entering bodies of water from sources such as fertilizer and wastewater. Students research the sources of nutrient pollution and potential solutions, and use simulations to investigate key variables and optimize the types of strategies for effectively decreasing and managing nutrient pollution to help develop their plans. Throughout the development process, we worked with a middle school STEM teacher to ensure the unit builds upon the science curriculum and the activities would be engaging and meaningful to students. The problem and location were chosen to illustrate that engineers can solve problems relevant to rural communities. Since people in rural locations tend to remain very connected to their communities throughout their lives, it is important to illustrate that engineering could be a relevant and viable career near home. The SCoPE curriculum was piloted with two teachers and 147 seventh grade students in a rural public school. Surveys and student drawings of engineers before and after implementation of the curriculum were used to characterize changes in students’ interest and beliefs about engineering. After completing the SCoPE curriculum, students’ ideas about engineers’ activities and the types of problems they solve were broadened. Students were 53% more likely to believe that engineers can protect the environment and 23% more likely to believe that they can identify problems in the community to solve (p < 0.001). When asked to draw an engineer, students were 1.3 times more likely to include nature/environment/agriculture (p < 0.01) and 3 times more likely to show engineers helping people in the community (p< 0.05) Additionally, while boys’ interest in science and engineering did not significantly change, girls’ interest in engineering and confidence in becoming an engineer significantly increased (Cohen’s D = 0.28, p<0.05). The SCoPE curriculum is available on PBS LearningMedia: https://www.pbslearningmedia.org/collection/solving-community-problems-with-engineering/ This project was funded by NSF through the Division of Engineering Education and Centers, Research in the Formation of Engineers program #202076. References American Society for Engineering Education. (2020). Framework for P-12 Engineering Learning. Washington, DC. DOI: 10.18260/1-100-1153 National Science Foundation, National Center for Science and Engineering Statistics. (2019). Women, Minorities, and Persons with Disabilities in Science and Engineering: 2019. Special Report NSF 17-310. Arlington, VA. https://ncses.nsf.gov/pubs/nsf21321/. Smith-Doerr, L., Alegria, S., & Sacco, T. (2017). How Diversity Matters in the US Science and Engineering Workforce: A Critical Review Considering Integration in Teams, Fields, and Organizational Contexts, Engaging Science, Technology, and Society 3, 139-153. 
    more » « less
  4. null (Ed.)
    With a steady rise in the aging population, researchers predict that one out of every six people will be over the age of 65 by 2020. Seniors need to monitor their health consistently as chronic diseases such as diabetes, arthritis, dementia, are highly prevalent among them. This has lead to an increase in the use of devices such as sensors, cameras, and robots, with technologies such as artificial intelligence and the internet of medical things. These can help in designing innovative solutions for improving the daily life of seniors and helping them to be more independent. Though the recent advancements in technology can help in developing a better assisted living, the key challenge is to make a reliable framework that can help the consumer in using those product at ease. In challenging times, such as the current pandemic, the need for a framework that can help in reducing social interaction is particularly significant. In this paper, we discuss an interactive framework with the help of a smart camera and smart speakers that can help seniors to manage their essential resources at ease. This Internet of Things based framework can help seniors in having an organized inventory without ever needing to leave their home. 
    more » « less
  5. Computer labs are commonly used in computing education to help students reinforce the knowledge obtained in classrooms and to gain hands-on experience on specific learning subjects. While traditional computer labs are based on physical computer centers on campus, more and more virtual computer lab systems (see, e.g., [1, 2, 3, 4]) have been developed that allow students to carry out labs on virtualized resources remotely through the internet. Virtual computer labs make it possible for students to use their own computers at home, instead of relying on computer centers on campus to work on lab assignments. However, they also make it difficult for students to collaborate, due to the fact that students work remotely and there is a lack of support of sharing and collaboration. This is in contrast to traditional computer labs where students naturally feel the presence of their peers in a physical lab room and can easily work together and help each other if needed. Funded by NSF’s Division of Undergraduate Education, this project develops a collaborative virtual computer lab (CVCL) environment to support collaborative learning in virtual computer labs. The CVCL environment leverages existing open source collaboration tools and desktop sharing technologies and adds new functions unique to virtual computer labs to make it easy for students to collaborate while working on computer labs remotely. It also implements several collaborative lab models to support different forms of collaboration in both formal and informal settings. We have developed the main functions of the CVCL environment and begun to use it in classes in the Computer Science (CS) department at Georgia State University. While the original project focuses on computer labs in its traditional sense, the issue of lack of collaboration applies to much broader learning settings where students work on tasks or assignments on computers, with or without being associated with a lab environment. Due to the high mobility of students in modern campuses and the fact that many learning activities are carried out over the Internet, computer-based learning increasingly happen in students’ personal spaces (e.g., homes, apartments), as opposed to public learning spaces (e.g., laboratories, libraries). In these personal spaces, it is difficult for students to get help from classmates or teaching assistants (TAs) when encountering problems. As a result, collaborative learning is difficult and rare. This is especially true for urban universities such as Georgia State University where a significant portion of students are part-time students and/or commute. To address this issue, we intend to broaden the concept of “virtual computer lab” to include general computer based learning happening in “virtual space,” which is any location where people can meet using networked digital devices [5]. Virtual space is recognized as an increasingly important part of “learning spaces” and asks for support from both the technology aspect and learning theory aspect [5]. Collaborative learning environments that support remote collaboration in virtual computer labs would fill an important need in this broader trend. 
    more » « less