Climate change is adversely impacting the burden of diarrheal diseases. Despite significant reduction in global prevalence, diarrheal disease remains a leading cause of morbidity and mortality among young children in low- and middle-income countries. Previous studies have shown that diarrheal disease is associated with meteorological conditions but the role of large-scale climate phenomena such as El Niño-Southern Oscillation (ENSO) and monsoon anomaly is less understood. We obtained 13 years (2002–2014) of diarrheal disease data from Nepal and investigated how the disease rate is associated with phases of ENSO (El Niño, La Niña, vs. ENSO neutral) monsoon rainfall anomaly (below normal, above normal, vs. normal), and changes in timing of monsoon onset, and withdrawal (early, late, vs. normal). Monsoon season was associated with a 21% increase in diarrheal disease rates (Incident Rate Ratios [IRR]: 1.21; 95% CI: 1.16–1.27). El Niño was associated with an 8% reduction in risk while the La Niña was associated with a 32% increase in under-5 diarrheal disease rates. Likewise, higher-than-normal monsoon rainfall was associated with increased rates of diarrheal disease, with considerably higher rates observed in the mountain region (IRR 1.51, 95% CI: 1.19–1.92). Our findings suggest that under-5 diarrheal disease burden in Nepal ismore »
This content will become publicly available on May 1, 2023
- Award ID(s):
- 2025470
- Publication Date:
- NSF-PAR ID:
- 10351890
- Journal Name:
- International Journal of Environmental Research and Public Health
- Volume:
- 19
- Issue:
- 10
- Page Range or eLocation-ID:
- 6138
- ISSN:
- 1660-4601
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Background Infections with nontyphoidal
Salmonella cause an estimated 19,336 hospitalizations each year in the United States. Sources of infection can vary by state and include animal and plant-based foods, as well as environmental reservoirs. Several studies have recognized the importance of increased ambient temperature and precipitation in the spread and persistence ofSalmonella in soil and food. However, the impact of extreme weather events onSalmonella infection rates among the most prevalent serovars, has not been fully evaluated across distinct U.S. regions.Methods To address this knowledge gap, we obtained
Salmonella case data forS. Enteriditis,S. Typhimurium,S. Newport, andS. Javiana (2004-2014; n = 32,951) from the Foodborne Diseases Active Surveillance Network (FoodNet), and weather data from the National Climatic Data Center (1960-2014). Extreme heat and precipitation events for the study period (2004-2014) were identified using location and calendar day specific 95thpercentile thresholds derived using a 30-year baseline (1960-1989). Negative binomial generalized estimating equations were used to evaluate the association between exposure to extreme events and salmonellosis rates.Results We observed that extreme heat exposure was associated with increased rates of infection with
S. Newport in Maryland (Incidence Rate Ratio (IRR): 1.07, 95% Confidence Interval (CI): 1.01, 1.14), and Tennessee (IRR: 1.06, 95% CI: 1.04, 1.09), both FoodNet sites with high densities of animal feeding operations (e.g., broilermore »Conclusions Overall, our study suggests a stronger association between extreme precipitation events, compared to extreme heat, and salmonellosis across multiple U.S. regions. In addition, the rates of infection with
Salmonella serovars that persist in environmental or plant-based reservoirs, such asS. Javiana andS. Newport, appear to be of particular significance regarding increased heat and rainfall events. -
Abstract Childhood diarrheal disease causes significant morbidity and mortality in low and middle-income countries, yet our ability to accurately predict diarrhea incidence remains limited. El Niño-Southern Oscillation (ENSO) has been shown to affect diarrhea dynamics in South America and Asia. However, understanding of its effects in sub-Saharan Africa, where the burden of under-5 diarrhea is high, remains inadequate. Here we investigate the connections between ENSO, local environmental conditions, and childhood diarrheal disease in Chobe District, Botswana. Our results demonstrate that La Niña conditions are associated with cooler temperatures, increased rainfall, and higher flooding in the Chobe region during the rainy season. In turn, La Niña conditions lagged 0–5 months are associated with higher than average incidence of under-5 diarrhea in the early rainy season. These findings demonstrate the potential use of ENSO as a long-lead prediction tool for childhood diarrhea in southern Africa.
-
Turner, Richard (Ed.)Background With the availability of multiple Coronavirus Disease 2019 (COVID-19) vaccines and the predicted shortages in supply for the near future, it is necessary to allocate vaccines in a manner that minimizes severe outcomes, particularly deaths. To date, vaccination strategies in the United States have focused on individual characteristics such as age and occupation. Here, we assess the utility of population-level health and socioeconomic indicators as additional criteria for geographical allocation of vaccines. Methods and findings County-level estimates of 14 indicators associated with COVID-19 mortality were extracted from public data sources. Effect estimates of the individual indicators were calculated with univariate models. Presence of spatial autocorrelation was established using Moran’s I statistic. Spatial simultaneous autoregressive (SAR) models that account for spatial autocorrelation in response and predictors were used to assess (i) the proportion of variance in county-level COVID-19 mortality that can explained by identified health/socioeconomic indicators (R 2 ); and (ii) effect estimates of each predictor. Adjusting for case rates, the selected indicators individually explain 24%–29% of the variability in mortality. Prevalence of chronic kidney disease and proportion of population residing in nursing homes have the highest R 2 . Mortality is estimated to increase by 43 per thousand residentsmore »
-
The study aims to analyze climate variability and farmers’ perception in Southern Ethiopia. Gridded annual temperature and precipitation data were obtained from the National Meteorological Agency (NMA) of Ethiopia for the period between 1983 and 2014. Using a multistage sampling technique, 403 farm households were surveyed to substantiate farmers’ perceptions about climate variability and change. The study applied a nonparametric Sen’s slope estimator and Mann–Kendall’s trend tests to detect the magnitude and statistical significance of climate variability and binary logit regression model to find factors influencing farm households’ perceptions about climate variability over three agroecological zones (AEZs). The trend analysis reveals that positive trends were observed in the annual maximum temperature, 0.02°C/year ( p < 0.01 ) in the lowland and 0.04°C/year ( p < 0.01 ) in the highland AEZs. The positive trend in annual minimum temperature was consistent in all AEZs and significant ( p < 0.01 ). An upward trend in the annual total rainfall (10 mm/year) ( p < 0.05 ) was recorded in the midland AEZ. Over 60% of farmers have perceived increasing temperature and decreasing rainfall in all AEZs. However, farmers’ perception about rainfall in the midland AEZ contradicts with meteorological analysis. Results from themore »