Attributed networks are a type of graph structured data used in many real-world scenarios. Detecting anomalies on attributed networks has a wide spectrum of applications such as spammer detection and fraud detection. Although this research area draws increasing attention in the last few years, previous works are mostly unsupervised because of expensive costs of labeling ground truth anomalies. Many recent studies have shown different types of anomalies are often mixed together on attributed networks and such invaluable human knowledge could provide complementary insights in advancing anomaly detection on attributed networks. To this end, we study the novel problem of modeling and integrating human knowledge of different anomaly types for attributed network anomaly detection. Specifically, we first model prior human knowledge through a novel data augmentation strategy. We then integrate the modeled knowledge in a Siamese graph neural network encoder through a well-designed contrastive loss. In the end, we train a decoder to reconstruct the original networks from the node representations learned by the encoder, and rank nodes according to its reconstruction error as the anomaly metric. Experiments on five real-world datasets demonstrate that the proposed framework outperforms the state-of-the-art anomaly detection algorithms.
more »
« less
Optimal Frameworks for Detecting Anomalies in Sensor-Intensive Heterogeneous Networks
Many network/graph structures are continuously monitored by various sensors that are placed at a subset of nodes and edges. The multidimensional data collected from these sensors over time create large-scale graph data in which the data points are highly dependent. Monitoring large-scale attributed networks with thousands of nodes and heterogeneous sensor data to detect anomalies and unusual events is a complex and computationally expensive process. This paper introduces a new generic approach inspired by state-space models for network anomaly detection that can utilize the information from the network topology, the node attributes (sensor data), and the anomaly propagation sets in an integrated manner to analyze the entire network all at once. This article presents how heterogeneous network sensor data can be analyzed to locate the sources of anomalies as well as the anomalous regions in a network, which can be impacted by one or multiple anomalies at any time instance. Experimental results demonstrate the superior performance of our proposed framework in detecting anomalies in attributed graphs. Summary of Contribution: With the increasing availability of large-scale network sensors and rapid advances in artificial intelligence methods, fundamentally new analytical tools are needed that can integrate data collected from sensors across the networks for decision making while taking into account the stochastic and topological dependencies between nodes, sensors, and anomalies. This paper develops a framework to intelligently and efficiently analyze complex and highly dependent data collected from disparate sensors across large-scale network/graph structures to detect anomalies and abnormal behavior in real time. Unlike general purpose (often black-box) machine learning models, this paper proposes a unique framework for network/graph structures that incorporates the complexities of networks and interdependencies between network entities and sensors. Because of the multidisciplinary nature of the paper that involves optimization, machine learning, and system monitoring and control, it can help researchers in both operations research and computer science domains to develop new network-specific computing tools and machine learning frameworks to efficiently manage large-scale network data.
more »
« less
- Award ID(s):
- 1846975
- NSF-PAR ID:
- 10351903
- Date Published:
- Journal Name:
- INFORMS Journal on Computing
- ISSN:
- 1091-9856
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sensory IoT (Internet of Things) networks are widely applied and studied in recent years and have demonstrated their unique benefits in various areas. In this paper, we bring the sensor network to an application scenario that has rarely been studied - the academic cleanrooms. We design SENSELET++, a low-cost IoT sensing platform that can collect, manage and analyze a large amount of sensory data from heterogeneous sensors. Furthermore, we design a novel hybrid anomaly detection framework which can detect both time-critical and complex non-critical anomalies. We validate SENSELET++ through the deployment of the sensing platform in a lithography cleanroom. Our results show the scalability, flexibility, and reliability properties of the system design. Also, using real-world sensory data collected by SENSELET++, our system can analyze data streams in real-time and detect shape and trend anomalies with a 91% true positive rate.more » « less
-
null (Ed.)Network anomaly detection aims to find network elements (e.g., nodes, edges, subgraphs) with significantly different behaviors from the vast majority. It has a profound impact in a variety of applications ranging from finance, healthcare to social network analysis. Due to the unbearable labeling cost, existing methods are predominately developed in an unsupervised manner. Nonetheless, the anomalies they identify may turn out to be data noises or uninteresting data instances due to the lack of prior knowledge on the anomalies of interest. Hence, it is critical to investigate and develop few-shot learning for network anomaly detection. In real-world scenarios, few labeled anomalies are also easy to be accessed on similar networks from the same domain as the target network, while most of the existing works omit to leverage them and merely focus on a single network. Taking advantage of this potential, in this work, we tackle the problem of few-shot network anomaly detection by (1) proposing a new family of graph neural networks -- Graph Deviation Networks (GDN) that can leverage a small number of labeled anomalies for enforcing statistically significant deviations between abnormal and normal nodes on a network; (2) equipping the proposed GDN with a new cross- network meta-learning algorithm to realize few-shot network anomaly detection by transferring meta-knowledge from multiple auxiliary networks. Extensive experimental evaluations demonstrate the efficacy of the proposed approach on few-shot or even one-shot network anomaly detection.more » « less
-
With recent technological advances in sensor nodes, IoT enabled applications have great potential in many domains. However, sensing data may be inaccurate due to not only faults or failures in the sensor and network but also the limited resources and transmission capability available in sensor nodes. In this paper, we first model streams of IoT data as a handful of sampled data in the transformed domain while assuming the information attained by those sampled data reveal different sparsity profiles between normal and abnormal. We then present a novel approach called AD2 (Anomaly Detection using Approximated Data) that applies a transformation on the original data, samples top k-dominant components, and detects data anomalies based on the disparity in k values. To demonstrate the effectiveness of AD2 , we use IoT datasets (temperature, humidity, and CO) collected from real-world wireless sensor nodes. Our experimental evaluation demonstrates that AD2 can approximate and successfully detect 64%-94% of anomalies using only 1.9% of the original data and minimize false positive rates, which would otherwise require the entire dataset to achieve the same level of accuracy.more » « less
-
As networks are ubiquitous in the modern era, point anomalies have been changed to graph anomalies in terms of anomaly shapes. However, the specific-shape priors about anomalous subgraphs of interest are seldom considered by the traditional approaches when detecting the subgraphs in attributed graphs (e.g., computer networks, Bitcoin networks, and etc.). This paper proposes a nonlinear approach to specific-shape graph anomaly detection. The nonlinear approach focuses on optimizing a broad class of nonlinear cost functions via specific-shape constraints in attributed graphs. Our approach can be used in many different graph anomaly settings. The traditional approaches can only support linear cost functions (e.g., an aggregation function for the summation of node weights). However, our approach can employ more powerful nonlinear cost functions and enjoys a rigorous theoretical guarantee on the near-optimal solution with the geometrical convergence rate.more » « less