Towards low-latency I/O services for mixed workloads using ultra-low latency SSDs
- PAR ID:
- 10351951
- Date Published:
- Journal Name:
- Proceedings of the 36th ACM International Conference on Supercomputing (ICS'22)
- Page Range / eLocation ID:
- 1 to 12
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Performing inference on pre-trained neural network models must meet the requirement of low-latency, which is often at odds with achieving high throughput. Existing deep learning systems use batching to improve throughput, which do not perform well when serving Recurrent Neural Networks with dynamic dataflow graphs. We propose the technique of cellular batching, which improves both the latency and throughput of RNN inference. Unlike existing systems that batch a fixed set of dataflow graphs, cellular batching makes batching decisions at the granularity of an RNN "cell" (a subgraph with shared weights) and dynamically assembles a batched cell for execution as requests join and leave the system. We implemented our approach in a system called BatchMaker. Experiments show that BatchMaker achieves much lower latency and also higher throughput than existing systems.more » « less
-
This paper addresses the design of a partly-parallel cascaded FFT-IFFT architecture that does not require any intermediate buffer. Folding can be used to design partly-parallel architectures for FFT and IFFT. While many cascaded FFT-IFFT architectures can be designed using various folding sets for the FFT and the IFFT, for a specified folded FFT architecture, there exists a unique folding set to design the IFFT architecture that does not require an intermediate buffer. Such a folding set is designed by processing the output of the FFT as soon as possible (ASAP) in the folded IFFT. Elimination of the intermediate buffer reduces latency and saves area. The proposed approach is also extended to interleaved processing of multi-channel time-series. The proposed FFT-IFFT cascade architecture saves about N/2 memory elements and N/4 clock cycles of latency compared to a design with identical folding sets. For the 2-interleaved FFT-IFFT cascade, the memory and latency savings are, respectively, N/2 units and N/2 clock cycles, compared to a design with identical folding sets.more » « less
An official website of the United States government

