skip to main content


Title: Long-baseline interferometry using single photon states as a non-local oscillator
Recent proposals suggest that distributed single photons serving as a ‘non-local oscillator’ can outperform coherent states as a phase reference for long-baseline interferometric imaging of weak sources [1,2]. Such nonlocal quantum states distributed between telescopes can, in-principle, surpass the limitations of conventional interferometric-based astronomical imaging approaches for very-long baselines such as: signal-to-noise, shot noise, signal loss, and faintness of the imaged objects. Here we demonstrate in a table-top experiment, interference between a nonlocal oscillator generated by equal-path splitting of an idler photon from a pulsed, separable, parametric down conversion process and a spectrally single-mode, quasi-thermal source. We compare the single-photon nonlocal oscillator to a more conventional local oscillator with uncertain photon number. Both methods enabled reconstruction of the source’s Gaussian spatial distribution by measurement of the interference visibility as a function of baseline separation and then applying the van Cittert-Zernike theorem [3,4]. In both cases, good qualitative agreement was found with the reconstructed source width and the known source width as measured using a camera. We also report an increase of signal-to-noise per ‘faux’ stellar photon detected when heralding the idler photon. 1593 heralded (non-local oscillator) detection events led to a maximum visibility of ~17% compared to the 10412 unheralded (classical local oscillator) detection events, which gave rise to a maximum visibility of ~10% – the first instance of quantum-enhanced sensing in this context.  more » « less
Award ID(s):
1936321
NSF-PAR ID:
10352012
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Hemmer, Philip R.; Migdall, Alan L.
Date Published:
Journal Name:
Proceedings Volume 12015, Quantum Computing, Communication, and Simulation II; 120150E (2022)
Page Range / eLocation ID:
62
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Qudit entanglement is an indispensable resource for quantum information processing since increasing dimensionality provides a pathway to higher capacity and increased noise resilience in quantum communications, and cluster-state quantum computations. In continuous-variable time–frequency entanglement, encoding multiple qubits per photon is only limited by the frequency correlation bandwidth and detection timing jitter. Here, we focus on the discrete-variable time–frequency entanglement in a biphoton frequency comb (BFC), generating by filtering the signal and idler outputs with a fiber Fabry–Pérot cavity with 45.32 GHz free-spectral range (FSR) and 1.56 GHz full-width-at-half-maximum (FWHM) from a continuous-wave (cw)-pumped type-II spontaneous parametric downconverter (SPDC). We generate a BFC whose time-binned/frequency-binned Hilbert space dimensionality is at least 324, based on the assumption of a pure state. Such BFC’s dimensionality doubles up to 648, after combining with its post-selected polarization entanglement, indicating a potential 6.28 bits/photon classical-information capacity. The BFC exhibits recurring Hong–Ou–Mandel (HOM) dips over 61 time bins with a maximum visibility of 98.4% without correction for accidental coincidences. In a post-selected measurement, it violates the Clauser–Horne–Shimony–Holt (CHSH) inequality for polarization entanglement by up to 18.5 standard deviations with anS-parameter of up to 2.771. It has Franson interference recurrences in 16 time bins with a maximum visibility of 96.1% without correction for accidental coincidences. From the zeroth- to the third-order Franson interference, we infer an entanglement of formation (Eof) up to 1.89 ± 0.03 ebits—where 2 ebits is the maximal entanglement for a 4 × 4 dimensional biphoton—as a lower bound on the 61 time-bin BFC’s high-dimensional entanglement. To further characterize time-binned/frequency-binned BFCs we obtain Schmidt mode decompositions of BFCs generated using cavities with 45.32, 15.15, and 5.03 GHz FSRs. These decompositions confirm the time–frequency scaling from Fourier-transform duality. Moreover, we present the theory of conjugate Franson interferometry—because it is characterized by the state’s joint-temporal intensity (JTI)—which can further help to distinguish between pure-state BFC and mixed state entangled frequency pairs, although the experimental implementation is challenging and not yet available. In summary, our BFC serves as a platform for high-dimensional quantum information processing and high-dimensional quantum key distribution (QKD).

     
    more » « less
  2. Precise knowledge of position and timing information is critical to support elementary protocols such as entanglement swapping on quantum networks. While approaches have been devised to use quantum light for such metrology, they largely rely on time-of-flight (ToF) measurements with single-photon detectors and, therefore, are limited to picosecond-scale resolution owing to detector jitter. In this work, we demonstrate an approach to distributed sensing that leverages phase modulation to map changes in the spectral phase to coincidence probability, thereby overcoming the limits imposed by single-photon detection. By extracting information about the joint biphoton phase, we measure a generalized delay—the difference in signal–idler arrival, relative to local radio frequency (RF) phase modulation. For nonlocal ranging measurements, we achieve (2σ<#comment/>) precision of±<#comment/>0.04psand for measurements of the relative RF phase, (2σ<#comment/>) precision of±<#comment/>0.7∘<#comment/>. We complement this fine timing information with ToF data from single-photon time-tagging to demonstrate absolute measurement of time delay. By relying on off-the-shelf telecommunications equipment and standard quantum resources, this approach has the potential to reduce overhead in practical quantum networks.

     
    more » « less
  3. We report results of very-long-baseline interferometric imaging using distributed single photons. We demonstrate source autocorrelation reconstruction, and increased signal-to-noise ratio per detected coincidence compared to using classical states as phase reference.

     
    more » « less
  4. Time-frequency (TF) filtering of analog signals has played a crucial role in the development of radio-frequency communications and is currently being recognized as an essential capability for communications, both classical and quantum, in the optical frequency domain. How best to design optical time-frequency (TF) filters to pass a targeted temporal mode (TM), and to reject background (noise) photons in the TF detection window? The solution for ‘coherent’ TF filtering is known—the quantum pulse gate—whereas the conventional, more common method is implemented by a sequence of incoherent spectral filtering and temporal gating operations. To compare these two methods, we derive a general formalism for two-stage incoherent time-frequency filtering, finding expressions for signal pulse transmission efficiency, and for the ability to discriminate TMs, which allows the blocking of unwanted background light. We derive the tradeoff between efficiency and TM discrimination ability, and find a remarkably concise relation between these two quantities and the time-bandwidth product of the combined filters. We apply the formalism to two examples—rectangular filters or Gaussian filters—both of which have known orthogonal-function decompositions. The formalism can be applied to any state of light occupying the input temporal mode, e.g., ‘classical’ coherent-state signals or pulsed single-photon states of light. In contrast to the radio-frequency domain, where coherent detection is standard and one can use coherent matched filtering to reject noise, in the optical domain direct detection is optimal in a number of scenarios where the signal flux is extremely small. Our analysis shows how the insertion loss and SNR change when one uses incoherent optical filters to reject background noise, followed by direct detection, e.g. photon counting. We point out implications in classical and quantum optical communications. As an example, we study quantum key distribution, wherein strong rejection of background noise is necessary to maintain a high quality of entanglement, while high signal transmission is needed to ensure a useful key generation rate.

     
    more » « less
  5. Abstract

    Quantum repeater networks require independent absorptive quantum memories capable of storing and retrieving indistinguishable photons to perform high-repetition entanglement swapping operations. The ability to perform these coherent operations at room temperature is of prime importance for the realization of scalable quantum networks. We perform Hong-Ou-Mandel (HOM) interference between photonic polarization states and single-photon-level pulses stored and retrieved from two sets of independent room-temperature quantum memories. We show that the storage and retrieval of polarization states from quantum memories does not degrade the HOM visibility for few-photon-level polarization states in a dual-rail configuration. For single-photon-level pulses, we measure the HOM visibility with various levels of background in a single polarization, single-rail QM, and investigate its dependence on the signal-to-background ratio. We obtain an HOM visibility of 43%, compared to the 48% no-memory limit of our set-up. These results allow us to estimate a 33% visibility for polarization qubits under the same conditions. These demonstrations lay the groundwork for future applications using large-scale memory-assisted quantum networks.

     
    more » « less