skip to main content

Title: Nonlocal subpicosecond delay metrology using spectral quantum interference

Precise knowledge of position and timing information is critical to support elementary protocols such as entanglement swapping on quantum networks. While approaches have been devised to use quantum light for such metrology, they largely rely on time-of-flight (ToF) measurements with single-photon detectors and, therefore, are limited to picosecond-scale resolution owing to detector jitter. In this work, we demonstrate an approach to distributed sensing that leverages phase modulation to map changes in the spectral phase to coincidence probability, thereby overcoming the limits imposed by single-photon detection. By extracting information about the joint biphoton phase, we measure a generalized delay—the difference in signal–idler arrival, relative to local radio frequency (RF) phase modulation. For nonlocal ranging measurements, we achieve (2σ<#comment/>) precision of±<#comment/>0.04psand for measurements of the relative RF phase, (2σ<#comment/>) precision of±<#comment/>0.7∘<#comment/>. We complement this fine timing information with ToF data from single-photon time-tagging to demonstrate absolute measurement of time delay. By relying on off-the-shelf telecommunications equipment and standard quantum resources, this approach has the potential to reduce overhead in practical quantum networks.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Page Range / eLocation ID:
Article No. 1339
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electro-optic quantum coherent interfaces map the amplitude and phase of a quantum signal directly to the phase or intensity of a probe beam. At terahertz frequencies, a fundamental challenge is not only to sense such weak signals (due to a weak coupling with a probe in the near-infrared) but also to resolve them in the time domain. Cavity confinement of both light fields can increase the interaction and achieve strong coupling. Using this approach, current realizations are limited to low microwave frequencies. Alternatively, in bulk crystals, electro-optic sampling was shown to reach quantum-level sensitivity of terahertz waves. Yet, the coupling strength was extremely weak. Here, we propose an on-chip architecture that concomitantly provides subcycle temporal resolution and an extreme sensitivity to sense terahertz intracavity fields below 20 V/m. We use guided femtosecond pulses in the near-infrared and a confinement of the terahertz wave to a volume ofVTHz∼<#comment/>10−<#comment/>9(λ<#comment/>THz/2)3in combination with ultraperformant organic molecules (r33=170pm/V) and accomplish a record-high single-photon electro-optic coupling rate ofgeo=2π<#comment/>×<#comment/>0.043GHz, 10,000 times higher than in recent reports of sensing vacuum field fluctuations in bulk media. Via homodyne detection implemented directly on chip, the interaction results into an intensity modulation of the femtosecond pulses. The single-photon cooperativity isC0=1.6×<#comment/>10−<#comment/>8, and the multiphoton cooperativity isC=0.002at room temperature. We show><#comment/>70dBdynamic range in intensity at 500 ms integration under irradiation with a weak coherent terahertz field. Similar devices could be employed in future measurements of quantum states in the terahertz at the standard quantum limit, or for entanglement of subsystems on subcycle temporal scales, such as terahertz and near-infrared quantum bits.

    more » « less
  2. Optical nonlinearity plays a pivotal role in quantum information processing using photons, from heralded single-photon sources and coherent wavelength conversion to long-sought quantum repeaters. Despite the availability of strong dipole coupling to quantum emitters, achieving strong bulk optical nonlinearity is highly desirable. Here, we realize quantum nanophotonic integrated circuits in thin-film InGaP with, to our knowledge, a record-high ratio of1.5%<#comment/>between the single-photon nonlinear coupling rate (g/2π<#comment/>=11.2MHz) and cavity-photon loss rate. We demonstrate second-harmonic generation with an efficiency of71200±<#comment/>10300%<#comment/>/Win the InGaP photonic circuit and photon-pair generation via degenerate spontaneous parametric downconversion with an ultrahigh rate exceeding 27.5 MHz/µW—an order of magnitude improvement of the state of the art—and a large coincidence-to-accidental ratio up to1.4×<#comment/>104. Our work shows InGaP as a potentially transcending platform for quantum nonlinear optics and quantum information applications.

    more » « less
  3. Metasurfaces with dynamic optical performance have the potential to enable a broad range of applications. We computationally investigate the potential of dielectric Huygens metasurfaces, supporting both electric and magnetic dipole resonances, as a candidate platform for dynamic tuning. The asymmetric response of the two dipole resonances to changes in geometric and material parameters, and the potential for separate control of amplitude and phase, is analyzed. A review of dynamic materials, and their promise and limitations for use in dynamic Huygens metasurfaces, is discussed. Vanadium dioxide (VO2) is recognized as a singularly interesting material, due to its variable refractive index and optical absorption in response to several stimuli. Transmitted phase modulation of±<#comment/>π<#comment/>is computationally demonstrated as a function of decaying resonance utilizing only the first 5% of the insulator-metal transition, corresponding to a temperature change of<<#comment/>10∘<#comment/>C. As another case study utilizing asymmetric resonance tuning in response to changing incidence angle, phase modulation (2π<#comment/>range for reflected light and><#comment/>1.5π<#comment/>for transmitted light) and amplitude modulation (fromR=1toT=1) are demonstrated using a simple silicon metasurface with varying incident angle within a range of∼<#comment/>15∘<#comment/>on two axes. A promising implementation within a micro-electromechanical system (MEMS)-based spatial light modulator, similar to conventional digital micromirror devices, is discussed.

    more » « less
  4. We demonstrate a Bell state analyzer that operates directly on frequency mismatch. Based on electro-optic modulators and Fourier-transform pulse shapers, our quantum frequency processor design implements interleaved Hadamard gates in discrete frequency modes. Experimental tests on entangled-photon inputs reveal fidelities of∼<#comment/>98%<#comment/>for discriminating between the|Ψ<#comment/>+⟩<#comment/>and|Ψ<#comment/>−<#comment/>⟩<#comment/>frequency-bin Bell states. Our approach resolves the tension between wavelength-multiplexed state transport and high-fidelity Bell state measurements, which typically require spectral indistinguishability.

    more » « less
  5. Light carries both spin angular momentum (SAM) and orbital angular momentum (OAM), which can be used as potential degrees of freedom for quantum information processing. Quantum emitters are ideal candidates towards on-chip control and manipulation of the full SAM–OAM state space. Here, we show coupling of a spin-polarized quantum emitter in a monolayerWSe2with the whispering gallery mode of aSi3N4ring resonator. The cavity mode carries a transverse SAM ofσ<#comment/>=±<#comment/>1in the evanescent regions, with the sign depending on the orbital power flow direction of the light. By tailoring the cavity–emitter interaction, we couple the intrinsic spin state of the quantum emitter to the SAM and propagation direction of the cavity mode, which leads to spin–orbit locking and subsequent chiral single-photon emission. Furthermore, by engineering how light is scattered from the WGM, we create a high-order Bessel beam which opens up the possibility to generate optical vortex carrying OAM states.

    more » « less