skip to main content

Title: A perspective on electrical generation of spin current for magnetic random access memories
Spin currents are used to write information in magnetic random access memory (MRAM) devices by switching the magnetization direction of one of the ferromagnetic electrodes of a magnetic tunnel junction (MTJ) nanopillar. Different physical mechanisms of conversion of charge current to spin current can be used in two-terminal and three-terminal device geometries. In two-terminal devices, charge-to-spin conversion occurs by spin filtering in the MTJ's ferromagnetic electrodes and present day MRAM devices operate near the theoretically expected maximum charge-to-spin conversion efficiency. In three-terminal devices, spin–orbit interactions in a channel material can also be used to generate large spin currents. In this Perspective article, we discuss charge-to-spin conversion processes that can satisfy the requirements of MRAM technology. We emphasize the need to develop channel materials with larger charge-to-spin conversion efficiency—that can equal or exceed that produced by spin filtering—and spin currents with a spin polarization component perpendicular to the channel interface. This would enable high-performance devices based on sub-20 nm diameter perpendicularly magnetized MTJ nanopillars without need of a symmetry breaking field. We also discuss MRAM characteristics essential for CMOS integration. Finally, we identify critical research needs for charge-to-spin conversion measurements and metrics that can be used to optimize device channel materials and interface properties prior to full MTJ nanopillar device fabrication and characterization.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Applied Physics Letters
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Giant spin-orbit torque (SOT) from topological insulators (TIs) provides an energy efficient writing method for magnetic memory, which, however, is still premature for practical applications due to the challenge of the integration with magnetic tunnel junctions (MTJs). Here, we demonstrate a functional TI-MTJ device that could become the core element of the future energy-efficient spintronic devices, such as SOT-based magnetic random-access memory (SOT-MRAM). The state-of-the-art tunneling magnetoresistance (TMR) ratio of 102% and the ultralow switching current density of 1.2 × 105 A cm−2have been simultaneously achieved in the TI-MTJ device at room temperature, laying down the foundation for TI-driven SOT-MRAM. The charge-spin conversion efficiencyθSHin TIs is quantified by both the SOT-induced shift of the magnetic switching field (θSH = 1.59) and the SOT-induced ferromagnetic resonance (ST-FMR) (θSH = 1.02), which is one order of magnitude larger than that in conventional heavy metals. These results inspire a revolution of SOT-MRAM from classical to quantum materials, with great potential to further reduce the energy consumption.

    more » « less
  2. Magnetic tunnel junction (MTJ) can serve as an excellent testbed for connecting Molecule between two ferromagnetic electrodes. A paramagnetic molecule covalently bonded to two ferromagnetic electrodes with two thiol functional groups can produce intriguing transport and magnetic properties. We have chemically bonded paramagnetic molecules between two ferromagnetic electrodes of a MTJ along the exposed side edges. In this paper we discussed the observation of Molecule induced dramatic changes in the magnetic and transport properties of the conventional magnetic tunnel junctions. Paramagnetic molecules were chemically bonded to ferromagnetic electrodes to bridge them across the insulating spacer along the exposed edges. Paramagnetic molecular channels along the tunnel junction edges decreased the overall current, through tunnel barrier and molecular channels, > 5 orders of magnitude below the leakage current of the bare tunnel junction at room temperature. These molecules caused significant changes in the spin density of states due to potential spin filtering effect. Also, paramagnetic molecules produced antiferromagnetic coupling between the affected magnetic electrodes. In this state spin transport in the magnetic tunnel junction based molecular devices plummeted by several orders. It is also noteworthy that our experimental studies provide a platform to connect a vast variety of ferromagnetic leads to the even broader array of high potential molecules such as single molecular magnets, porphyrin, and single ion molecules. The strength of exchange coupling between ferromagnetic electrodes and molecules can be tailored by utilizing different tethers and terminal functional groups. The MTJMSD can provide an advanced form of logic and memory devices, including a testbed for the Molecule based quantum computation devices. Future study about the interaction between molecular magnets and ferromagnets and interaction of thiol ended alkanes with ferromagnets will be of very valuable. This study indicates the potential of magnetic molecules as a mean to transforming conventional magnetic tunnel junctions and producing unprecedented magnetic and transport properties. 
    more » « less
  3. We offer a perspective on the prospects of ultrafast spintronics and opto-magnetism as a pathway to high-performance, energy-efficient, and non-volatile embedded memory in digital integrated circuit applications. Conventional spintronic devices, such as spin-transfer-torque magnetic-resistive random-access memory (STT-MRAM) and spin–orbit torque MRAM, are promising due to their non-volatility, energy-efficiency, and high endurance. STT-MRAMs are now entering into the commercial market; however, they are limited in write speed to the nanosecond timescale. Improvement in the write speed of spintronic devices can significantly increase their usefulness as viable alternatives to the existing CMOS-based devices. In this article, we discuss recent studies that advance the field of ultrafast spintronics and opto-magnetism. An optimized ferromagnet–ferrimagnet exchange-coupled magnetic stack, which can serve as the free layer of a magnetic tunnel junction (MTJ), can be optically switched in as fast as ∼3 ps. Integration of ultrafast magnetic switching of a similar stack into an MTJ device has enabled electrical readout of the switched state using a relatively larger tunneling magnetoresistance ratio. Purely electronic ultrafast spin–orbit torque induced switching of a ferromagnet has been demonstrated using ∼6 ps long charge current pulses. We conclude our Perspective by discussing some of the challenges that remain to be addressed to accelerate ultrafast spintronics technologies toward practical implementation in high-performance digital information processing systems.

    more » « less
  4. The emergence of embedded magnetic random-access memory (MRAM) and its integration in mainstream semiconductor manufacturing technology have created an unprecedented opportunity for engineering computing systems with improved performance, energy efficiency, lower cost, and unconventional computing capabilities. While the initial interest in the existing generation of MRAM—which is based on the spin-transfer torque (STT) effect in ferromagnetic tunnel junctions—was driven by its nonvolatile data retention and lower cost of integration compared to embedded Flash (eFlash), the focus of MRAM research and development efforts is increasingly shifting toward alternative write mechanisms (beyond STT) and new materials (beyond ferromagnets) in recent years. This has been driven by the need for better speed vs density and speed vs endurance trade-offs to make MRAM applicable to a wider range of memory markets, as well as to utilize the potential of MRAM in various unconventional computing architectures that utilize the physics of nanoscale magnets. In this Perspective, we offer an overview of spin–orbit torque (SOT) as one of these beyond-STT write mechanisms for the MRAM devices. We discuss, specifically, the progress in developing SOT-MRAM devices with perpendicular magnetization. Starting from basic symmetry considerations, we discuss the requirement for an in-plane bias magnetic field which has hindered progress in developing practical SOT-MRAM devices. We then discuss several approaches based on structural, magnetic, and chiral symmetry-breaking that have been explored to overcome this limitation and realize bias-field-free SOT-MRAM devices with perpendicular magnetization. We also review the corresponding material- and device-level challenges in each case. We then present a perspective of the potential of these devices for computing and security applications beyond their use in the conventional memory hierarchy. 
    more » « less
  5. Abstract

    Employing the probabilistic nature of unstable nano-magnet switching has recently emerged as a path towards unconventional computational systems such as neuromorphic or Bayesian networks. In this letter, we demonstrate proof-of-concept stochastic binary operation using hard axis initialization of nano-magnets and control of their output state probability (activation function) by means of input currents. Our method provides a natural path towards addition of weighted inputs from various sources, mimicking the integration function of neurons. In our experiment, spin orbit torque (SOT) is employed to “drive” nano-magnets with perpendicular magnetic anisotropy (PMA) -to their metastable state, i.e. in-plane hard axis. Next, the probability of relaxing into one magnetization state (+mi) or the other (−mi) is controlled using an Oersted field generated by an electrically isolated current loop, which acts as a “charge” input to the device. The final state of the magnet is read out by the anomalous Hall effect (AHE), demonstrating that the magnetization can be probabilistically manipulated and output through charge currents, closing the loop from charge-to-spin and spin-to-charge conversion. Based on these building blocks, a two-node directed network is successfully demonstrated where the status of the second node is determined by the probabilistic output of the previous node and a weighted connection between them. We have also studied the effects of various magnetic properties, such as magnet size and anisotropic field on the stochastic operation of individual devices through Monte Carlo simulations of Landau Lifshitz Gilbert (LLG) equation. The three-terminal stochastic devices demonstrated here are a critical step towards building energy efficient spin based neural networks and show the potential for a new application space.

    more » « less