skip to main content

Search for: All records

Award ID contains: 2105114

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Switching of perpendicular magnetization via spin–orbit torque (SOT) is of particular interest in the development of non-volatile magnetic random access memory (MRAM) devices. We studied current-induced magnetization switching of Ir/GdFeCo/Cu/Pt heterostructures in a Hall cross geometry as a function of the in-plane applied magnetic field. Remarkably, magnetization switching is observed at zero applied field. This is shown to result from the competition between SOT, the Oersted field generated by the charge current, and the material's coercivity. Our results show a means of achieving zero-field switching that can impact the design of future spintronics devices, such as SOT-MRAM.
    Free, publicly-accessible full text available August 28, 2023
  2. Free, publicly-accessible full text available June 1, 2023
  3. Spin currents are used to write information in magnetic random access memory (MRAM) devices by switching the magnetization direction of one of the ferromagnetic electrodes of a magnetic tunnel junction (MTJ) nanopillar. Different physical mechanisms of conversion of charge current to spin current can be used in two-terminal and three-terminal device geometries. In two-terminal devices, charge-to-spin conversion occurs by spin filtering in the MTJ's ferromagnetic electrodes and present day MRAM devices operate near the theoretically expected maximum charge-to-spin conversion efficiency. In three-terminal devices, spin–orbit interactions in a channel material can also be used to generate large spin currents. In this Perspective article, we discuss charge-to-spin conversion processes that can satisfy the requirements of MRAM technology. We emphasize the need to develop channel materials with larger charge-to-spin conversion efficiency—that can equal or exceed that produced by spin filtering—and spin currents with a spin polarization component perpendicular to the channel interface. This would enable high-performance devices based on sub-20 nm diameter perpendicularly magnetized MTJ nanopillars without need of a symmetry breaking field. We also discuss MRAM characteristics essential for CMOS integration. Finally, we identify critical research needs for charge-to-spin conversion measurements and metrics that can be used to optimize device channel materials andmore »interface properties prior to full MTJ nanopillar device fabrication and characterization.« less
    Free, publicly-accessible full text available April 18, 2023