skip to main content


Title: The concerns and perceived challenges students faced when traditional in-person engineering courses suddenly transitioned to remote learning
This research evaluates the impact of switching college engineering courses from in-person instruction to emergency remote learning among engineering students at a university in the Midwest. The study aimed to answer the question: What were the concerns and perceived challenges students faced when traditional in-person engineering courses suddenly transitioned to remote learning? The goal of this study is to uncover the challenges students were facing in engineering online courses and to understand students’ concerns. Our findings can help improve teaching instruction to provide students with previously unavailable educational assistance for online engineering courses. We collected online survey responses during weeks 8 and 9 of the academic semester, shortly after the COVID-19 shutdown and emergency transition to remote learning in Spring 2020. The survey included two open-ended questions which inquired about students’ feedback about moving the class online, and one two-item scale which assessed students’ confidence in online engineering learning. Data analysis for the open-ended questions was guided by the theoretical framework - Social Cognitive Career Theory [1] that explores how context, person factors and social cognitions contribute to career goals, interests and actions. A phenomenological approach [2] was conducted to understand the experience of these students. Open coding and axial coding [2] methods were used to create initial categories then themes related to students' concerns and challenges. Data from the two-item scale was evaluated using descriptive statistics: means, standard deviations, and ranges. Four main themes with separate sub-categories emerged from the student responses: 1) Instructor’s ability to teach course online (Instructional limitations, Seeking help, Increased Workload), 2) Student’s ability to learn online (Time Management, Lower engagement and motivation, Harder to absorb material, Hard to focus, Worry about performance), 3) Difficulties outside of class (Technology issues), and 4) No concerns. Students seemed more concerned about their ability to learn the material (48% of responses) than the instructor’s ability to teach the material (36% of responses). The instructional limitations or lack of instructional support (22% of responses) and time management (12% of responses) were among the major concerns in the sub-categories. The results from two-item scale indicated participants' s confidence in their ability to master their classroom knowledge was at an intermediate level via online instruction (6/10), and participants' confidence in the instructor's ability to teach knowledge in online classes is moderate to high (7/10). The results align with the open-ended question response in which students were somewhat more concerned about their ability to learn than the instructor’s ability to teach. The themes and analysis will be a valuable tool to help institutions and instructors improve student learning experiences.  more » « less
Award ID(s):
1926480
NSF-PAR ID:
10352035
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2022 ASEE Annual Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many undergraduate students encounter struggle as they navigate academic, financial, and social contexts of higher education. The transition to emergency online instruction during the Spring of 2020 due to the COVID-19 pandemic exacerbated these struggles. To assess college students’ struggles during the transition to online learning in undergraduate biology courses, we surveyed a diverse collection of students ( n = 238) at an R2 research institution in the Southeastern United States. Students were asked if they encountered struggles and whether they were able to overcome them. Based on how students responded, they were asked to elaborate on (1) how they persevered without struggle, (2) how they were able to overcome their struggles, or (3) what barriers they encountered that did not allow them to overcome their struggles. Each open-ended response was thematically coded to address salient patterns in students’ ability to either persevere or overcome their struggle. We found that during the transition to remote learning, 67% of students experienced struggle. The most reported struggles included: shifts in class format, effective study habits, time management, and increased external commitments. Approximately, 83% of those struggling students were able to overcome their struggle, most often citing their instructor’s support and resources offered during the transition as reasons for their success. Students also cited changes in study habits, and increased confidence or belief that they could excel within the course as ways in which they overcame their struggles. Overall, we found no link between struggles in the classroom and any demographic variables we measured, which included race/ethnicity, gender expression, first-generation college students, transfer student status, and commuter student status. Our results highlight the critical role that instructors play in supporting student learning during these uncertain times by promoting student self-efficacy and positive-growth mindset, providing students with the resources they need to succeed, and creating a supportive and transparent learning environment. 
    more » « less
  2. As part of an overall research program investigating the impact of changes in teaching strategies on students' engineering social cognitions (self-efficacy and outcome expectations), this paper investigates students' confidence in their ability to learn and their instructor's ability to teach across 6 engineering courses. A group of 6 faculty formed a learning community focused on improved teaching strategies for their classes. The faculty chose selected strategies and implemented them in their classes. Surveys asked students to rank their confidence level in "their ability to learn" the specific class material and the instructor's "ability to teach" the class material using a sliding bar scale from 0-100. Surveys were conducted before and after the improvements to the teaching strategies at both the beginning and end of the semesters. The results of the surveys are compared before and after the teaching improvements, beginning to end of semester, per course, online to in-person, and per gender. In summary, the study found that while there was no significant difference in the control group, a decrease in students’ confidence to learn and in their confidence in their instructors’ ability to teach was observed in the treatment group. This decrease was observed in specific courses that changed instructional modes due to Covid. Despite teaching improvements, students’ confidence decreased as they moved through the course material. Further research is needed to explore these findings and their implications for teaching strategies. 
    more » « less
  3. null (Ed.)
    COVID-19 has altered the landscape of teaching and learning. For those in in-service teacher education, workshops have been suspended causing programs to adapt their professional development to a virtual space to avoid indefinite postponement or cancellation. This paradigm shift in the way we conduct learning experiences creates several logistical and pedagogical challenges but also presents an important opportunity to conduct research about how learning happens in these new environments. This paper describes the approach we took to conduct research in a series of virtual workshops aimed at teaching rural elementary teachers about engineering practices and how to teach a unit from an engineering curriculum. Our work explores how engineering concepts and practices are socially constructed through interactions with teachers, students, and artifacts. This approach, called interactional ethnography has been used by the authors and others to learn about engineering teaching and learning in precollege classrooms. The approach relies on collecting data during instruction, such as video and audio recordings, interviews, and artifacts such as journal entries and photos of physical designs. Findings are triangulated by analyzing these data sources. This methodology was going to be applied in an in-person engineering education workshop for rural elementary teachers, however the pandemic forced us to conduct the workshops remotely. Teachers, working in pairs, were sent workshop supplies, and worked together during the training series that took place over Zoom over four days for four hours each session. The paper describes how we collected video and audio of teachers and the facilitators both in whole group and in breakout rooms. Class materials and submissions of photos and evaluations were managed using Google Classroom. Teachers took photos of their work and scanned written materials and submitted them all by email. Slide decks were shared by the users and their group responses were collected in real time. Workshop evaluations were collected after each meeting using Google Forms. Evaluation data suggest that the teachers were engaged by the experience, learned significantly about engineering concepts and the knowledge-producing practices of engineers, and feel confident about applying engineering activities in their classrooms. This methodology should be of interest to the membership for three distinct reasons. First, remote instruction is a reality in the near-term but will likely persist in some form. Although many of us prefer to teach in person, remote learning allows us to reach many more participants, including those living in remote and rural areas who cannot easily attend in-person sessions with engineering educators, so it benefits the field to learn how to teach effectively in this way. Second, it describes an emerging approach to engineering education research. Interactional ethnography has been applied in precollege classrooms, but this paper demonstrates how it can also be used in teacher professional development contexts. Third, based on our application of interactional ethnography to an education setting, readers will learn specifically about how to use online collaborative software and how to collect and organize data sources for research purposes. 
    more » « less
  4. Abstract Background

    While laboratory practices have traditionally been conducted in-person, online asynchronous laboratory learning has been growing in popularity due to increased enrollments and the recent pandemic, creating opportunities for accessibility. In remote asynchronous learning environments, students have more autonomy to choose how they participate with other students in their laboratory classes. Communities of practice and self-efficacy may provide insights into why students are making their participation choices and how they are interacting with peers in asynchronous physics laboratory courses.

    Results

    In this mixed methods, explanatory sequential study, students in an introductory physics remote asynchronous laboratory (N = 272) were surveyed about their social learning perceptions and their physics laboratory self-efficacy. Three groups of students were identified based upon their self-reported participation level of communication with peers in asynchronous courses: (1)contributors, who communicated with peers via instant messaging software and posted comments; (2)lurkers, who read discussions on instant messaging software without posting comments; and (3)outsiders, who neither read nor posted comments to peer discussions. Analysis of variance with post hoc Tukey tests showed significant differences in social learning perceptions among contributors, lurkers, and outsiders, with a large effect size, and differences between contributing and lurking students’ self-efficacy, with a small effect size. Qualitative findings from open-ended survey responses indicated contributors felt the structure of the learning environment, or their feeling of connectedness with other students, facilitated their desire to contribute. Many lurkers felt they could get what they needed through vicarious learning, and many expressed their lack of confidence to post relevant, accurate comments. Outsiders felt they did not have to, did not want to, or could not connect with other students.

    Conclusions

    While the classroom laboratory traditionally requires all students to participate in the learning process through active socialization with other students, students in a remote asynchronous laboratory may still gain the benefits of participation through lurking. Instructors may consider lurking in an online or remote science laboratory as a legitimate form of participation and engagement.

     
    more » « less
  5. The pandemic of COVID-19 is disrupting engineering education globally, at all levels of education.While distance education is nothing new, the pandemic of COVID-19 forced instructors to rapidly move their courses online whether or not they had ever received prior training in online education. In particular, there is very little literature to guide instructors in supporting students in online engineering design or project-based courses. The purpose of this research is to examine engineering students’ report of social support in their project and design-based courses at a large research university during the move to online instruction due to COVID-19in the Spring 2020 semester and to provide recommendations for instructors teaching these types of courses online in the future.Our study is framed by social constructivism and social capital theory.We surveyed undergraduate engineering and engineering technology students(n=235) across undergraduate levels during the final week of the Spring 2019 semester.Survey questions included open-ended prompts about social supports and overall experience with the transition to online learning as well as name and resource generator questions focused on specific people and types of interactions that changed during the pandemic. We used qualitative content analysis of the open-ended responses along with comparisons of the name and resource generator to develop recommendations for instructors.Recommendations to increase students’ social supports include:facilitating informal conversations between students and between students and the instructional team, grouping students located in the same time zones in teams, facilitating co-working sessions for students, establishing weekly structure, and utilizing some synchronous components (e.g., virtual office hours). 
    more » « less