skip to main content


Title: A methodological approach for researching online teacher professional development
COVID-19 has altered the landscape of teaching and learning. For those in in-service teacher education, workshops have been suspended causing programs to adapt their professional development to a virtual space to avoid indefinite postponement or cancellation. This paradigm shift in the way we conduct learning experiences creates several logistical and pedagogical challenges but also presents an important opportunity to conduct research about how learning happens in these new environments. This paper describes the approach we took to conduct research in a series of virtual workshops aimed at teaching rural elementary teachers about engineering practices and how to teach a unit from an engineering curriculum. Our work explores how engineering concepts and practices are socially constructed through interactions with teachers, students, and artifacts. This approach, called interactional ethnography has been used by the authors and others to learn about engineering teaching and learning in precollege classrooms. The approach relies on collecting data during instruction, such as video and audio recordings, interviews, and artifacts such as journal entries and photos of physical designs. Findings are triangulated by analyzing these data sources. This methodology was going to be applied in an in-person engineering education workshop for rural elementary teachers, however the pandemic forced us to conduct the workshops remotely. Teachers, working in pairs, were sent workshop supplies, and worked together during the training series that took place over Zoom over four days for four hours each session. The paper describes how we collected video and audio of teachers and the facilitators both in whole group and in breakout rooms. Class materials and submissions of photos and evaluations were managed using Google Classroom. Teachers took photos of their work and scanned written materials and submitted them all by email. Slide decks were shared by the users and their group responses were collected in real time. Workshop evaluations were collected after each meeting using Google Forms. Evaluation data suggest that the teachers were engaged by the experience, learned significantly about engineering concepts and the knowledge-producing practices of engineers, and feel confident about applying engineering activities in their classrooms. This methodology should be of interest to the membership for three distinct reasons. First, remote instruction is a reality in the near-term but will likely persist in some form. Although many of us prefer to teach in person, remote learning allows us to reach many more participants, including those living in remote and rural areas who cannot easily attend in-person sessions with engineering educators, so it benefits the field to learn how to teach effectively in this way. Second, it describes an emerging approach to engineering education research. Interactional ethnography has been applied in precollege classrooms, but this paper demonstrates how it can also be used in teacher professional development contexts. Third, based on our application of interactional ethnography to an education setting, readers will learn specifically about how to use online collaborative software and how to collect and organize data sources for research purposes.  more » « less
Award ID(s):
1930777
NSF-PAR ID:
10287728
Author(s) / Creator(s):
Date Published:
Journal Name:
Middle Atlantic ASEE Section Spring 2021 Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This research paper describes a study of elementary teacher learning in an online graduate program in engineering education for in-service teachers. While the existing research on teachers in engineering focuses on their disciplinary understandings and beliefs (Hsu, Cardella, & Purzer, 2011; Martin, et al., 2015; Nadelson, et al., 2015; Van Haneghan, et al., 2015), there is increasing attention to teachers' pedagogy in engineering (Capobianco, Delisi, & Radloff, 2018). In our work, we study teachers' pedagogical sense-making and reflection, which, we argue, is critical for teaching engineering design. This study takes place in [blinded] program, in which teachers take four graduate courses over fifteen months. The program was designed to help teachers not only learn engineering content, but also shift their thinking and practice to be more responsive to their students. Two courses focus on pedagogy, including what it means to learn engineering and instructional approaches to support this learning. These courses consist of four main elements, in which teachers: 1) Read data-rich engineering education articles to reflect on learning engineering; 2) Participate in online video clubs, looking at classroom videos of students’ engineering and commenting on what they notice; 3) Conduct interviews with learners about the mechanism of a pull-back car; and 4) Plan and teach engineering lessons, collecting and analyzing video from their classrooms. In the context of this program, we ask: what stances do teachers take toward learning and teaching engineering design? What shifts do we observe in their stances? We interviewed teachers at the start of the program and after each course. In addition to reflecting on their learning and teaching, teachers watched videos of students’ engineering and discussed what they saw as relevant for teaching engineering. We informally compared summaries from previous interviews to get a sense of changes in how participants talked about engineering, how they approached teaching engineering, and what they noticed in classroom videos. Through this process, we identified one teacher to focus on for this paper: Alma is a veteran 3rd-5th grade science teacher in a rural, racially-diverse public school in the southeastern region of the US. We then developed content logs of Alma's interviews and identified emergent themes. To refine these themes, we looked for confirming and disconfirming evidence in the interviews and in her coursework in the program. We coded each interview for these themes and developed analytic memos, highlighting where we saw variability and stability in her stances and comparing across interviews to describe shifts in Alma's reasoning. It was at this stage that we narrowed our focus to her stances toward the engineering design process (EDP). In this paper, we describe and illustrate shifts we observed in Alma's reasoning, arguing that she exhibited dramatic shifts in her stances toward teaching and learning the EDP. At the start of the program, she was stable in treating the EDP as a series of linear steps that students and engineers progress through. After engaging and reflecting on her own engineering in the first course, she started to express a more fluid stance when talking more abstractly about the EDP but continued to take it up as a linear process in her classroom teaching. By the end of the program, Alma exhibited a growing stability across contexts in her stance toward the EDP as a fluid set of overlapping practices that students and engineers could engage in. 
    more » « less
  2. Despite the recent emphasis on the importance of K-12 students engaging in engineering content and practices, there has been little research done about how teachers learn engineering practices through teacher workshops and even less on how they utilize those experiences to teach engineering in their classes. Using methods of interactional ethnography, we analyzed data from an online teacher workshop in which elementary teachers engineered solutions to a multi-criteria problem in which balancing tradeoffs was a key practice. We found that teachers tended to focus on one criterion rather than both and lacked strategies to consider balancing these tradeoffs. We also found that a second iteration afforded all groups to demonstrate learning through improvement. Implications are discussed related to the importance of a focus on balancing tradeoffs in teacher learning and on pedagogy of engineering projects. 
    more » « less
  3. Light microscopy provides a window into another world that is not visible to the unaided eye. Because of this and its importance in biological discoveries, the light microscope is an essential tool for scientific studies. It can also be used with a variety of easily obtained specimens to provide dramatic demonstrations of previously unknown features of common plants and animals. Thus, one way to interest young people in science is to start with an introduction to light microscopy. This is an especially effective strategy for individuals who attend less advantaged or under-resourced schools, as they may not have been previously exposed to scientific concepts in their classes. However, introducing light microscopy lessons in the classroom can be challenging because of the high cost of light microscopes, even those that are relatively basic, in addition to their usual large size. Efforts are underway by our laboratory in collaboration with the Biophysical Society (BPS) to introduce young people to light microscopy using small, easy-to-assemble wooden microscopes developed by Echo Laboratories. The microscopes are available online as low-cost kits ($10 each with shipping), each consisting of 19 parts printed onto an 81⁄2 x 11 inch sheet of light-weight wood (Fig. 1). After punching out the pieces, they can be assembled into a microscope with a moveable stage and a low-power lens, also provided in the kit (Fig. 2). Photos taken with a cell phone through the microscope lens can give magnifications of ~16-18x, or higher. At these magnifications, features of specimens that are not visible to the unaided eye can be easily observed, e.g., small hairs on the margins of leaves or lichens [1]. As a member of the BPS Education Committee, one of us (SAE) wrote a Lesson Plan on Light Microscopy specifically for use with the wooden microscopes. SAE was also able to obtain a gift of 500 wooden microscope kits for the BPS from Echo Laboratories and Chroma Technology Corp in 2016. The wooden microscope kits, together with the lesson plan, have provided the materials for our present outreach efforts. Rather than giving out the wooden microscope kits to individuals, the BPS asked the Education Committee to maximize the impact of the gift by distributing the microscopes with the Lesson Plan on Light Microscopy to teachers, e.g., through teachers’ workshops or outreach sessions. This strategy was devised to enable the Society to reach a larger number of young people than by giving the microscopes to individuals. The Education Committee first evaluated the microscopes as a tool to introduce students to scientific concepts by providing microscopes to a BPS member at the National University of Colombia who conducted a workshop on Sept 19-24, 2016 in Tumaco, Columbia. During the workshop, which involved 120 high school girls and 80 minority students, including Afro-Colombian and older students, the students built the wooden microscopes and examined specimens, and compared the microscopes to a conventional light microscope. Assembling the wooden microscopes was found to be a useful procedure that was similar to a scientific protocol, and encouraged young girls and older students to participate in science. This was especially promising in Colombia, where there are few women in science and little effort to increase women in STEM fields. Another area of outreach emerged recently when one of us, USP, an undergraduate student at Duke University, who was taught by SAE how to assemble the wooden microscopes and how to use the lesson plan, took three wooden microscopes on a visit to her family in Bangalore, India in summer 2018 [2]. There she organized and led three sessions in state run, under-resourced government schools, involving classes of ~25-40 students each. This was very successful – the students enjoyed learning about the microscopes and building them, and the science teachers were interested in expanding the sessions to other government schools. USP taught the teachers how to assemble and use the microscopes and gave the teachers the microscopes and lesson plan, which is also available to the public at the BPS web site. She also met with a founder of the organization, Whitefield Rising, which is working to improve teaching in government schools, and taught her and several volunteers how to assemble the microscopes and conduct the sessions. The Whitefield Rising members have been able to conduct nine further sessions in Bangalore over the past ~18 months (Fig. 3), using microscope kits provided to them by the BPS. USP has continued to work with members of the Whitefield Rising group during her summer and winter breaks on visits to Bangalore. Recently she has been working with another volunteer group that has expanded the outreach efforts to New Delhi. The light microscopy outreach that our laboratory is conducting in India in collaboration with the BPS is having a positive impact because we have been able to develop a partnership with volunteers in Bangalore and New Delhi. The overall goal is to enhance science education globally, especially in less advantaged schools, by providing a low-cost microscope that can be used to introduce students to scientific concepts. 
    more » « less
  4. null (Ed.)
    K-12 teachers serve a critical role in their students’ development of interest in engineering, especially as engineering content is emphasized in curriculum standards. However, teachers may not be comfortable teaching engineering in their classrooms as it can require a different set of skills from which they are trained. Professional development activities focused on engineering content can help teachers feel more comfortable teaching the subject in their classrooms and can increase their knowledge of engineering and thus their engineering teaching self-efficacy. There are many different types of professional development activities teachers might experience, each one with a set of established best practices. VT PEERS (Virginia Tech Partnering with Educators and Engineers in Rural Communities) is a program designed to provide recurrent hands-on engineering activities to middle school students in or near rural Appalachia. The project partners middle school teachers, university affiliates, and local industry partners throughout the state region to develop and implement engineering activities that align with state defined standards of learning (SOLs). Throughout this partnership, teachers co-facilitate engineering activities in their classrooms throughout the year with the other partners, and teachers have the opportunity to participate in a two-day collaborative workshop every year. VT PEERS held a workshop during the summer of 2019, after the second year of the partnership, to discuss the successes and challenges experienced throughout the program. Three focus groups, one for each grade level involved (grades 6-8), were held during the summit for teachers and industry partners to discuss their experiences. None of the teachers involved in the partnership have formal training in engineering. The transcripts of these focus groups were the focus of the exploratory qualitative data analyses to answer the following research question: How do middle-school teachers develop teaching engineering self-efficacy through professional development activities? Deductive coding of the focus group transcripts was completed using the four sources of self-efficacy: mastery experience, vicarious experience, verbal persuasion and physiological states. The analysis revealed that vicarious experiences can be particularly valuable to increasing teachers’ teaching engineering self-efficacy. For example, teachers valued the ability to play the role of a student in an engineering lesson and being able to share ideas about teaching engineering lessons with other teachers. This information can be useful to develop engineering-focused professional development activities for teachers. Additionally, as teachers gather information from their teaching engineering vicarious experiences, they can inform their own teaching practices and practice reflective teaching as they teach lessons. 
    more » « less
  5. This fundamental research in pre-college education engineering study investigates the ways in which elementary teachers learn about engineering by engaging in the epistemic practices of engineers. Teaching engineering explicitly in elementary settings is a paradigm shift, as most K-6 teachers are not taught about engineering in their preparation programs and did not do classroom engineering as students. However, current STEM education reforms require these teachers to teach engineering in science settings and it will require concerted efforts between professional development providers and educational researchers to better help these teachers learn about and teach engineering to their students. Our study context consisted of 18 2nd and 4th grade teachers participating in one of two two-day workshops. The first day focused on what engineering is, what the epistemic practices of engineering are, and how to manage classroom engineering projects. The second day focused on how to teach a specific engineering unit for their grade level. Taking a sociomaterial view of learning, we asked the following research questions: 1. How do the engineering notebooks scaffold the teachers activities and discourse? 2. How and to what extent does the notebook support their engagement in engineering practices? Our analysis triangulated between three data sources during a two-hour time period where teachers designed, tested, and improved enclosures intended to minimize cost and mass loss of an ice cube in a heat chamber (“Perspiring Penguins” (Schnittka, 2010)). We focused on teacher talk/action collected from video/audio recordings trained on four small groups (10 total teachers). We also collected engineering notebooks they used during this activity. After initial analyses, we followed up with select teachers with targeted interview questions to focus on clarification of questions that arose. Our findings suggest that the teachers use the notebooks in ways that are significantly different from the ways engineers do; however, they are a useful pedagogical tool that supported them in attending to and discussing activities that were necessary to engage in engineering practices and design/re-design their technology. Additionally, our paper will describe specific examples where teachers had rich discussions that were not represented in the notebooks but there were references made in the notebooks that were not explicitly discussed. Implications for the importance of well-designed notebooks and the benefits of ethnographic methods for researching teacher learning will be discussed. 
    more » « less