skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Infection strategy and biogeography distinguish cosmopolitan groups of marine jumbo bacteriophages
Abstract Recent research has underscored the immense diversity and key biogeochemical roles of large DNA viruses in the ocean. Although they are important constituents of marine ecosystems, it is sometimes difficult to detect these viruses due to their large size and complex genomes. This is true for “jumbo” bacteriophages, which have genome sizes >200 kbp and large capsids reaching up to 0.45 µm in diameter. In this study, we sought to assess the genomic diversity and distribution of these bacteriophages in the ocean by generating and analyzing jumbo phage genomes from metagenomes. We recover 85 marine jumbo phages that ranged in size from 201 to 498 kilobases, and we examine their genetic similarities and biogeography together with a reference database of marine jumbo phage genomes. By analyzing Tara Oceans metagenomic data, we show that although most jumbo phages can be detected in a range of different size fractions, 17 of our bins tend to be found in those greater than 0.22 µm, potentially due to their large size. Our network-based analysis of gene-sharing patterns reveals that jumbo bacteriophages belong to five genome clusters that are typified by diverse replication strategies, genomic repertoires, and potential host ranges. Our analysis of jumbo phage distributions in the ocean reveals that depth is a major factor shaping their biogeography, with some phage genome clusters occurring preferentially in either surface or mesopelagic waters, respectively. Taken together, our findings indicate that jumbo phages are widespread community members in the ocean with complex genomic repertoires and ecological impacts that warrant further targeted investigation.  more » « less
Award ID(s):
1918271
PAR ID:
10352115
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The ISME Journal
Volume:
16
Issue:
6
ISSN:
1751-7362
Page Range / eLocation ID:
1657 to 1667
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract CrAssphage is the most abundant human-associated virus and the founding member of a large group of bacteriophages, discovered in animal-associated and environmental metagenomes, that infect bacteria of the phylum Bacteroidetes. We analyze 4907 Circular Metagenome Assembled Genomes (cMAGs) of putative viruses from human gut microbiomes and identify nearly 600 genomes of crAss-like phages that account for nearly 87% of the DNA reads mapped to these cMAGs. Phylogenetic analysis of conserved genes demonstrates the monophyly of crAss-like phages, a putative virus order, and of 5 branches, potential families within that order, two of which have not been identified previously. The phage genomes in one of these families are almost twofold larger than the crAssphage genome (145-192 kilobases), with high density of self-splicing introns and inteins. Many crAss-like phages encode suppressor tRNAs that enable read-through of UGA or UAG stop-codons, mostly, in late phage genes. A distinct feature of the crAss-like phages is the recurrent switch of the phage DNA polymerase type between A and B families. Thus, comparative genomic analysis of the expanded assemblage of crAss-like phages reveals aspects of genome architecture and expression as well as phage biology that were not apparent from the previous work on phage genomics. 
    more » « less
  2. Hatfull, Graham F. (Ed.)
    ABSTRACT Bacteria and bacteriophages (phages) have evolved potent defense and counterdefense mechanisms that allowed their survival and greatest abundance on Earth. CRISPR (clustered regularly interspaced short palindromic repeat)-Cas (CRISPR-associated) is a bacterial defense system that inactivates the invading phage genome by introducing double-strand breaks at targeted sequences. While the mechanisms of CRISPR defense have been extensively investigated, the counterdefense mechanisms employed by phages are poorly understood. Here, we report a novel counterdefense mechanism by which phage T4 restores the genomes broken by CRISPR cleavages. Catalyzed by the phage-encoded recombinase UvsX, this mechanism pairs very short stretches of sequence identity (minihomology sites), as few as 3 or 4 nucleotides in the flanking regions of the cleaved site, allowing replication, repair, and stitching of genomic fragments. Consequently, a series of deletions are created at the targeted site, making the progeny genomes completely resistant to CRISPR attack. Our results demonstrate that this is a general mechanism operating against both type II (Cas9) and type V (Cas12a) CRISPR-Cas systems. These studies uncovered a new type of counterdefense mechanism evolved by T4 phage where subtle functional tuning of preexisting DNA metabolism leads to profound impact on phage survival. IMPORTANCE Bacteriophages (phages) are viruses that infect bacteria and use them as replication factories to assemble progeny phages. Bacteria have evolved powerful defense mechanisms to destroy the invading phages by severing their genomes soon after entry into cells. We discovered a counterdefense mechanism evolved by phage T4 to stitch back the broken genomes and restore viral infection. In this process, a small amount of genetic material is deleted or another mutation is introduced, making the phage resistant to future bacterial attack. The mutant virus might also gain survival advantages against other restriction conditions or DNA damaging events. Thus, bacterial attack not only triggers counterdefenses but also provides opportunities to generate more fit phages. Such defense and counterdefense mechanisms over the millennia led to the extraordinary diversity and the greatest abundance of bacteriophages on Earth. Understanding these mechanisms will open new avenues for engineering recombinant phages for biomedical applications. 
    more » « less
  3. Abstract “Jumbo phages” are tailed phages with genome sizes >200 kbp and physical dimensions reaching up to 0.45 μm. Although jumbo phages represent only a small fraction of the isolated phages to date, metagenomic surveys have shown that they are broadly distributed in a wide range of environments. In this study, we surveyed metagenomic data from aquatic systems and identified 25 genomes from a heretofore-undescribed lineage of jumbo phages with genomes reaching up to 307 kbp. We refer to these phages as “moraphages”, from the Gaelic word ‘mór’, for large. Moraphages represent a diverse lineage with inter-genome average amino acid identity (AAI) ranging from 39 to 95%, and our pan-genomic analysis identified only 26 viral orthologous groups (VOGs) found in at least 80% of the genomes. Our phylogenomic analysis suggests that moraphages are distant relatives of a recently described lineage of huge phages from marine sediment. Moraphages lack much of the genetic machinery found in other lineages of large phages, but they have a range of genes that may be used to take over host cellular machinery and subvert host defenses, such as glutamine synthetases, antitoxin genes, and chaperones. The predicted hosts of most moraphages are members of the phylumBacteroidota, and some encode homologs of the chaperones DnaK and DnaJ that bear evidence of recent gene transfer from members of the orderFlavobacteriales. Our work sheds light on the emerging diversity of large phages that are found across the biosphere. 
    more » « less
  4. Fernández_Robledo, José A (Ed.)
    Vibrio parahaemolyticus(VP) is a bacterial pathogen found in brackish and marine water that infects many marine organisms, such as oysters and shrimp. Consumption of raw or undercooked seafood contaminated withV. parahaemolyticusis a primary cause of seafood-borne gastroenteritis in humans. Due to increasing ocean temperatures,V. parahaemolyticuscontamination of oyster beds in the United States has spread up the east and west coasts to the northern-most states. Promising new research is exploring the isolation of bacteriophages againstV. parahaemolyticuswith a long-term goal to possibly decontaminate oyster beds, thereby expanding the harvest season and allowing for safer consumption of seafood. In this study, store-bought oysters harvested from the Chesapeake Bay in Virginia were used to isolate four bacteriophages with activity against a specificV. parahaemolyticusstrain. A standard double agar overlay plaque assay was used to identify phage activity. After phage isolation, the genomes were sequenced, and transmission electron microscopy (TEM) was performed to visualize the virions. The genomes and TEM images revealed four distinct phages. Three of the phages are distinct isolates that exhibit podovirus-like morphology with short tails and genome sizes of approximately 43 kbp. One phage has siphovirus-like morphology and is a mid-sized tailed phage with a genome size of 80 kbp. Although spot tests performed with the oyster homogenates on up to 10 differentV. parahaemolyticusstrains recovered activity across a wide range of hosts, plaque assays with the isolated phages showed limited host range. Future work will be necessary to determine the viability of using the bacteriophages for elimination ofV. parahaemolyticusin harvested oysters, treatment of aquaculture seed and spat, and/or the environment. 
    more » « less
  5. ABSTRACT Bacteriophages are the most abundant and diverse biological entities on the planet, and new phage genomes are being discovered at a rapid pace. As more phage genomes are published, new methods are needed for placing these genomes in an ecological and evolutionary context. Phages are difficult to study by phylogenetic methods, because they exchange genes regularly, and no single gene is conserved across all phages. Here, we demonstrate how gene-level networks can provide a high-resolution view of phage genetic diversity and offer a novel perspective on virus ecology. We focus our analyses on virus host range and show how network topology corresponds to host relatedness, how to find groups of genes with the strongest host-specific signatures, and how this perspective can complement phage host prediction tools. We discuss extensions of gene network analysis to predicting the emergence of phages on new hosts, as well as applications to features of phage biology beyond host range. IMPORTANCE Bacteriophages (phages) are viruses that infect bacteria, and they are critical drivers of bacterial evolution and community structure. It is generally difficult to study phages by using tree-based methods, because gene exchange is common, and no single gene is shared among all phages. Instead, networks offer a means to compare phages while placing them in a broader ecological and evolutionary context. In this work, we build a network that summarizes gene sharing across phages and test how a key constraint on phage ecology, host range, corresponds to the structure of the network. We find that the network reflects the relatedness among phage hosts, and phages with genes that are closer in the network are likelier to infect similar hosts. This approach can also be used to identify genes that affect host range, and we discuss possible extensions to analyze other aspects of viral ecology. 
    more » « less