skip to main content


Title: Infection strategy and biogeography distinguish cosmopolitan groups of marine jumbo bacteriophages
Abstract Recent research has underscored the immense diversity and key biogeochemical roles of large DNA viruses in the ocean. Although they are important constituents of marine ecosystems, it is sometimes difficult to detect these viruses due to their large size and complex genomes. This is true for “jumbo” bacteriophages, which have genome sizes >200 kbp and large capsids reaching up to 0.45 µm in diameter. In this study, we sought to assess the genomic diversity and distribution of these bacteriophages in the ocean by generating and analyzing jumbo phage genomes from metagenomes. We recover 85 marine jumbo phages that ranged in size from 201 to 498 kilobases, and we examine their genetic similarities and biogeography together with a reference database of marine jumbo phage genomes. By analyzing Tara Oceans metagenomic data, we show that although most jumbo phages can be detected in a range of different size fractions, 17 of our bins tend to be found in those greater than 0.22 µm, potentially due to their large size. Our network-based analysis of gene-sharing patterns reveals that jumbo bacteriophages belong to five genome clusters that are typified by diverse replication strategies, genomic repertoires, and potential host ranges. Our analysis of jumbo phage distributions in the ocean reveals that depth is a major factor shaping their biogeography, with some phage genome clusters occurring preferentially in either surface or mesopelagic waters, respectively. Taken together, our findings indicate that jumbo phages are widespread community members in the ocean with complex genomic repertoires and ecological impacts that warrant further targeted investigation.  more » « less
Award ID(s):
1918271
NSF-PAR ID:
10352115
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The ISME Journal
Volume:
16
Issue:
6
ISSN:
1751-7362
Page Range / eLocation ID:
1657 to 1667
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hatfull, Graham F. (Ed.)
    ABSTRACT Bacteria and bacteriophages (phages) have evolved potent defense and counterdefense mechanisms that allowed their survival and greatest abundance on Earth. CRISPR (clustered regularly interspaced short palindromic repeat)-Cas (CRISPR-associated) is a bacterial defense system that inactivates the invading phage genome by introducing double-strand breaks at targeted sequences. While the mechanisms of CRISPR defense have been extensively investigated, the counterdefense mechanisms employed by phages are poorly understood. Here, we report a novel counterdefense mechanism by which phage T4 restores the genomes broken by CRISPR cleavages. Catalyzed by the phage-encoded recombinase UvsX, this mechanism pairs very short stretches of sequence identity (minihomology sites), as few as 3 or 4 nucleotides in the flanking regions of the cleaved site, allowing replication, repair, and stitching of genomic fragments. Consequently, a series of deletions are created at the targeted site, making the progeny genomes completely resistant to CRISPR attack. Our results demonstrate that this is a general mechanism operating against both type II (Cas9) and type V (Cas12a) CRISPR-Cas systems. These studies uncovered a new type of counterdefense mechanism evolved by T4 phage where subtle functional tuning of preexisting DNA metabolism leads to profound impact on phage survival. IMPORTANCE Bacteriophages (phages) are viruses that infect bacteria and use them as replication factories to assemble progeny phages. Bacteria have evolved powerful defense mechanisms to destroy the invading phages by severing their genomes soon after entry into cells. We discovered a counterdefense mechanism evolved by phage T4 to stitch back the broken genomes and restore viral infection. In this process, a small amount of genetic material is deleted or another mutation is introduced, making the phage resistant to future bacterial attack. The mutant virus might also gain survival advantages against other restriction conditions or DNA damaging events. Thus, bacterial attack not only triggers counterdefenses but also provides opportunities to generate more fit phages. Such defense and counterdefense mechanisms over the millennia led to the extraordinary diversity and the greatest abundance of bacteriophages on Earth. Understanding these mechanisms will open new avenues for engineering recombinant phages for biomedical applications. 
    more » « less
  2. null (Ed.)
    Abstract CrAssphage is the most abundant human-associated virus and the founding member of a large group of bacteriophages, discovered in animal-associated and environmental metagenomes, that infect bacteria of the phylum Bacteroidetes. We analyze 4907 Circular Metagenome Assembled Genomes (cMAGs) of putative viruses from human gut microbiomes and identify nearly 600 genomes of crAss-like phages that account for nearly 87% of the DNA reads mapped to these cMAGs. Phylogenetic analysis of conserved genes demonstrates the monophyly of crAss-like phages, a putative virus order, and of 5 branches, potential families within that order, two of which have not been identified previously. The phage genomes in one of these families are almost twofold larger than the crAssphage genome (145-192 kilobases), with high density of self-splicing introns and inteins. Many crAss-like phages encode suppressor tRNAs that enable read-through of UGA or UAG stop-codons, mostly, in late phage genes. A distinct feature of the crAss-like phages is the recurrent switch of the phage DNA polymerase type between A and B families. Thus, comparative genomic analysis of the expanded assemblage of crAss-like phages reveals aspects of genome architecture and expression as well as phage biology that were not apparent from the previous work on phage genomics. 
    more » « less
  3. Rappe, Michael S. (Ed.)
    ABSTRACT For the abundant marine Alphaproteobacterium Pelagibacter (SAR11), and other bacteria, phages are powerful forces of mortality. However, little is known about the most abundant Pelagiphages in nature, such as the widespread HTVC023P-type, which is currently represented by two cultured phages. Using viral metagenomic data sets and fluorescence-activated cell sorting, we recovered 80 complete, undescribed Podoviridae genomes that form 10 phylogenomically distinct clades (herein, named Clades I to X) related to the HTVC023P-type. These expanded the HTVC023P-type pan-genome by 15-fold and revealed 41 previously unknown auxiliary metabolic genes (AMGs) in this viral lineage. Numerous instances of partner-AMGs (colocated and involved in related functions) were observed, including partners in nucleotide metabolism, DNA hypermodification, and Curli biogenesis. The Type VIII secretion system (T8SS) responsible for Curli biogenesis was identified in nine genomes and expanded the repertoire of T8SS proteins reported thus far in viruses. Additionally, the identified T8SS gene cluster contained an iron-dependent regulator (FecR), as well as a histidine kinase and adenylate cyclase that can be implicated in T8SS function but are not within T8SS operons in bacteria. While T8SS are lacking in known Pelagibacter , they contribute to aggregation and biofilm formation in other bacteria. Phylogenetic reconstructions of partner-AMGs indicate derivation from cellular lineages with a more recent transfer between viral families. For example, homologs of all T8SS genes are present in syntenic regions of distant Myoviridae Pelagiphages, and they appear to have alphaproteobacterial origins with a later transfer between viral families. The results point to an unprecedented multipartner-AMG transfer between marine Myoviridae and Podoviridae. Together with the expansion of known metabolic functions, our studies provide new prospects for understanding the ecology and evolution of marine phages and their hosts. IMPORTANCE One of the most abundant and diverse marine bacterial groups is Pelagibacter . Phages have roles in shaping Pelagibacter ecology; however, several Pelagiphage lineages are represented by only a few genomes. This paucity of data from even the most widespread lineages has imposed limits on the understanding of the diversity of Pelagiphages and their impacts on hosts. Here, we report 80 complete genomes, assembled directly from environmental data, which are from undescribed Pelagiphages and render new insights into the manipulation of host metabolism during infection. Notably, the viruses have functionally related partner genes that appear to be transferred between distant viruses, including a suite that encode a secretion system which both brings a new functional capability to the host and is abundant in phages across the ocean. Together, these functions have important implications for phage evolution and for how Pelagiphage infection influences host biology in manners extending beyond canonical viral lysis and mortality. 
    more » « less
  4. Bordenstein, Seth (Ed.)
    ABSTRACT Viruses belonging to the Nucleocytoviricota phylum are globally distributed and include members with notably large genomes and complex functional repertoires. Recent studies have shown that these viruses are particularly diverse and abundant in marine systems, but the magnitude of actively replicating Nucleocytoviricota present in ocean habitats remains unclear. In this study, we compiled a curated database of 2,431 Nucleocytoviricota genomes and used it to examine the gene expression of these viruses in a 2.5-day metatranscriptomic time-series from surface waters of the California Current. We identified 145 viral genomes with high levels of gene expression, including 90 Imitervirales and 49 Algavirales viruses. In addition to recovering high expression of core genes involved in information processing that are commonly expressed during viral infection, we also identified transcripts of diverse viral metabolic genes from pathways such as glycolysis, the TCA cycle, and the pentose phosphate pathway, suggesting that virus-mediated reprogramming of central carbon metabolism is common in oceanic surface waters. Surprisingly, we also identified viral transcripts with homology to actin, myosin, and kinesin domains, suggesting that viruses may use these gene products to manipulate host cytoskeletal dynamics during infection. We performed phylogenetic analysis on the virus-encoded myosin and kinesin proteins, which demonstrated that most belong to deep-branching viral clades, but that others appear to have been acquired from eukaryotes more recently. Our results highlight a remarkable diversity of active Nucleocytoviricota in a coastal marine system and underscore the complex functional repertoires expressed by these viruses during infection. IMPORTANCE The discovery of giant viruses has transformed our understanding of viral complexity. Although viruses have traditionally been viewed as filterable infectious agents that lack metabolism, giant viruses can reach sizes rivalling cellular lineages and possess genomes encoding central metabolic processes. Recent studies have shown that giant viruses are widespread in aquatic systems, but the activity of these viruses and the extent to which they reprogram host physiology in situ remains unclear. Here, we show that numerous giant viruses consistently express central metabolic enzymes in a coastal marine system, including components of glycolysis, the TCA cycle, and other pathways involved in nutrient homeostasis. Moreover, we found expression of several viral-encoded actin, myosin, and kinesin genes, indicating viral manipulation of the host cytoskeleton during infection. Our study reveals a high activity of giant viruses in a coastal marine system and indicates they are a diverse and underappreciated component of microbial diversity in the ocean. 
    more » « less
  5. ABSTRACT Relatively little is known about the phages that infect agriculturally important nitrogen-fixing rhizobial bacteria. Here we report the genome and cryo-electron microscopy structure of the Sinorhizobium meliloti -infecting T4 superfamily phage ΦM9. This phage and its close relative Rhizobium phage vB_RleM_P10VF define a new group of T4 superfamily phages. These phages are distinctly different from the recently characterized cyanophage-like S. meliloti phages of the ΦM12 group. Structurally, ΦM9 has a T=16 capsid formed from repeating units of an extended gp23-like subunit that assemble through interactions between one subunit and the adjacent E-loop insertion domain. Though genetically very distant from the cyanophages, the ΦM9 capsid closely resembles that of the T4 superfamily cyanophage Syn9. ΦM9 also has the same T=16 capsid architecture as the very distant phage SPO1 and the herpesviruses. Despite their overall lack of similarity at the genomic and structural levels, ΦM9 and S. meliloti phage ΦM12 have a small number of open reading frames in common that appear to encode structural proteins involved in interaction with the host and which may have been acquired by horizontal transfer. These proteins are predicted to encode tail baseplate proteins, tail fibers, tail fiber assembly proteins, and glycanases that cleave host exopolysaccharide. IMPORTANCE Despite recent advances in the phylogenetic and structural characterization of bacteriophages, only a small number of phages of plant-symbiotic nitrogen-fixing soil bacteria have been studied at the molecular level. The effects of phage predation upon beneficial bacteria that promote plant growth remain poorly characterized. First steps in understanding these soil bacterium-phage dynamics are genetic, molecular, and structural characterizations of these groups of phages. The T4 superfamily phages are among the most complex phages; they have large genomes packaged within an icosahedral head and a long, contractile tail through which the DNA is delivered to host cells. This phylogenetic and structural study of S. meliloti -infecting T4 superfamily phage ΦM9 provides new insight into the diversity of this family. The comparison of structure-related genes in both ΦM9 and S. meliloti -infecting T4 superfamily phage ΦM12, which comes from a completely different lineage of these phages, allows the identification of host infection-related factors. 
    more » « less