skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Integration of anatomy ontology data with protein–protein interaction networks improves the candidate gene prediction accuracy for anatomical entities
Abstract Background Identification of genes responsible for anatomical entities is a major requirement in many fields including developmental biology, medicine, and agriculture. Current wet lab techniques used for this purpose, such as gene knockout, are high in resource and time consumption. Protein–protein interaction (PPI) networks are frequently used to predict disease genes for humans and gene candidates for molecular functions, but they are rarely used to predict genes for anatomical entities. Moreover, PPI networks suffer from network quality issues, which can be a limitation for their usage in predicting candidate genes. Therefore, we developed an integrative framework to improve the candidate gene prediction accuracy for anatomical entities by combining existing experimental knowledge about gene-anatomical entity relationships with PPI networks using anatomy ontology annotations. We hypothesized that this integration improves the quality of the PPI networks by reducing the number of false positive and false negative interactions and is better optimized to predict candidate genes for anatomical entities. We used existing Uberon anatomical entity annotations for zebrafish and mouse genes to construct gene networks by calculating semantic similarity between the genes. These anatomy-based gene networks were semantic networks, as they were constructed based on the anatomy ontology annotations that were obtained from the experimental data in the literature. We integrated these anatomy-based gene networks with mouse and zebrafish PPI networks retrieved from the STRING database and compared the performance of their network-based candidate gene predictions. Results According to evaluations of candidate gene prediction performance tested under four different semantic similarity calculation methods (Lin, Resnik, Schlicker, and Wang), the integrated networks, which were semantically improved PPI networks, showed better performances by having higher area under the curve values for receiver operating characteristic and precision-recall curves than PPI networks for both zebrafish and mouse. Conclusion Integration of existing experimental knowledge about gene-anatomical entity relationships with PPI networks via anatomy ontology improved the candidate gene prediction accuracy and optimized them for predicting candidate genes for anatomical entities.  more » « less
Award ID(s):
2048296
PAR ID:
10352302
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
BMC Bioinformatics
Volume:
21
Issue:
1
ISSN:
1471-2105
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Martelli, Pier Luigi (Ed.)
    Abstract Motivation Transferring knowledge between species is challenging: different species contain distinct proteomes and cellular architectures, which cause their proteins to carry out different functions via different interaction networks. Many approaches to protein functional annotation use sequence similarity to transfer knowledge between species. These approaches cannot produce accurate predictions for proteins without homologues of known function, as many functions require cellular context for meaningful prediction. To supply this context, network-based methods use protein-protein interaction (PPI) networks as a source of information for inferring protein function and have demonstrated promising results in function prediction. However, most of these methods are tied to a network for a single species, and many species lack biological networks. Results In this work, we integrate sequence and network information across multiple species by computing IsoRank similarity scores to create a meta-network profile of the proteins of multiple species. We use this integrated multispecies meta-network as input to train a maxout neural network with Gene Ontology terms as target labels. Our multispecies approach takes advantage of more training examples, and consequently leads to significant improvements in function prediction performance compared to two network-based methods, a deep learning sequence-based method and the BLAST annotation method used in the Critial Assessment of Functional Annotation. We are able to demonstrate that our approach performs well even in cases where a species has no network information available: when an organism’s PPI network is left out we can use our multi-species method to make predictions for the left-out organism with good performance. Availability and implementation The code is freely available at https://github.com/nowittynamesleft/NetQuilt. The data, including sequences, PPI networks and GO annotations are available at https://string-db.org/. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  2. Mulder, Nicola (Ed.)
    Abstract Motivation Leveraging cross-species information in protein function prediction can add significant power to network-based protein function prediction methods, because so much functional information is conserved across at least close scales of evolution. We introduce MUNDO, a new cross-species co-embedding method that combines a single-network embedding method with a co-embedding method to predict functional annotations in a target species, leveraging also functional annotations in a model species network. Results Across a wide range of parameter choices, MUNDO performs best at predicting annotations in the mouse network, when trained on mouse and human protein–protein interaction (PPI) networks, in the human network, when trained on human and mouse PPIs, and in Baker’s yeast, when trained on Fission and Baker’s yeast, as compared to competitor methods. MUNDO also outperforms all the cross-species methods when predicting in Fission yeast when trained on Fission and Baker’s yeast; however, in this single case, discarding the information from the other species and using annotations from the Fission yeast network alone usually performs best. Availability and implementation All code is available and can be accessed here: github.com/v0rtex20k/MUNDO. Supplementary information Supplementary data are available at Bioinformatics Advances online. Additional experimental results are on our github site. 
    more » « less
  3. Abstract Morphology remains a primary source of phylogenetic information for many groups of organisms, and the only one for most fossil taxa. Organismal anatomy is not a collection of randomly assembled and independent “parts”, but instead a set of dependent and hierarchically nested entities resulting from ontogeny and phylogeny. How do we make sense of these dependent and at times redundant characters? One promising approach is using ontologies—structured controlled vocabularies that summarize knowledge about different properties of anatomical entities, including developmental and structural dependencies. Here, we assess whether evolutionary patterns can explain the proximity of ontology-annotated characters within an ontology. To do so, we measure phylogenetic information across characters and evaluate if it matches the hierarchical structure given by ontological knowledge—in much the same way as across-species diversity structure is given by phylogeny. We implement an approach to evaluate the Bayesian phylogenetic information (BPI) content and phylogenetic dissonance among ontology-annotated anatomical data subsets. We applied this to data sets representing two disparate animal groups: bees (Hexapoda: Hymenoptera: Apoidea, 209 chars) and characiform fishes (Actinopterygii: Ostariophysi: Characiformes, 463 chars). For bees, we find that BPI is not substantially explained by anatomy since dissonance is often high among morphologically related anatomical entities. For fishes, we find substantial information for two clusters of anatomical entities instantiating concepts from the jaws and branchial arch bones, but among-subset information decreases and dissonance increases substantially moving to higher-level subsets in the ontology. We further applied our approach to address particular evolutionary hypotheses with an example of morphological evolution in miniature fishes. While we show that phylogenetic information does match ontology structure for some anatomical entities, additional relationships and processes, such as convergence, likely play a substantial role in explaining BPI and dissonance, and merit future investigation. Our work demonstrates how complex morphological data sets can be interrogated with ontologies by allowing one to access how information is spread hierarchically across anatomical concepts, how congruent this information is, and what sorts of processes may play a role in explaining it: phylogeny, development, or convergence. [Apidae; Bayesian phylogenetic information; Ostariophysi; Phenoscape; phylogenetic dissonance; semantic similarity.] 
    more » « less
  4. Abstract There is a growing body of research on the evolution of anatomy in a wide variety of organisms. Discoveries in this field could be greatly accelerated by computational methods and resources that enable these findings to be compared across different studies and different organisms and linked with the genes responsible for anatomical modifications. Homology is a key concept in comparative anatomy; two important types are historical homology (the similarity of organisms due to common ancestry) and serial homology (the similarity of repeated structures within an organism). We explored how to most effectively represent historical and serial homology across anatomical structures to facilitate computational reasoning. We assembled a collection of homology assertions from the literature with a set of taxon phenotypes for the skeletal elements of vertebrate fins and limbs from the Phenoscape Knowledgebase. Using seven competency questions, we evaluated the reasoning ramifications of two logical models: the Reciprocal Existential Axioms (REA) homology model and the Ancestral Value Axioms (AVA) homology model. The AVA model returned all user-expected results in addition to the search term and any of its subclasses. The AVA model also returns any superclass of the query term in which a homology relationship has been asserted. The REA model returned the user-expected results for five out of seven queries. We identify some challenges of implementing complete homology queries due to limitations of OWL reasoning. This work lays the foundation for homology reasoning to be incorporated into other ontology-based tools, such as those that enable synthetic supermatrix construction and candidate gene discovery. [Homology; ontology; anatomy; morphology; evolution; knowledgebase; phenoscape.] 
    more » « less
  5. Fiston-Lavier, Anna-Sophie (Ed.)
    Abstract SummaryUnderstanding the pathways and biological processes underlying differential gene expression is fundamental for characterizing gene expression changes in response to an experimental condition. Zebrafish, with a transcriptome closely mirroring that of humans, are frequently utilized as a model for human development and disease. However, a challenge arises due to the incomplete annotations of zebrafish pathways and biological processes, with more comprehensive annotations existing in humans. This incompleteness may result in biased functional enrichment findings and loss of knowledge. danRerLib, a versatile Python package for zebrafish transcriptomics researchers, overcomes this challenge and provides a suite of tools to be executed in Python including gene ID mapping, orthology mapping for the zebrafish and human taxonomy, and functional enrichment analysis utilizing the latest updated Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. danRerLib enables functional enrichment analysis for GO and KEGG pathways, even when they lack direct zebrafish annotations through the orthology of human-annotated functional annotations. This approach enables researchers to extend their analysis to a wider range of pathways, elucidating additional mechanisms of interest and greater insight into experimental results. Availability and implementationdanRerLib, along with comprehensive documentation and tutorials, is freely available. The source code is available at https://github.com/sdsucomptox/danrerlib/ with associated documentation and tutorials at https://sdsucomptox.github.io/danrerlib/. The package has been developed with Python 3.9 and is available for installation on the package management systems PIP (https://pypi.org/project/danrerlib/) and Conda (https://anaconda.org/sdsu_comptox/danrerlib) with additional installation instructions on the documentation website. 
    more » « less