Abstract Anthropogenic carbon dioxide (CO2) release in the atmosphere from fossil fuel combustion has inspired scientists to study CO2to biofuel conversion. Oxygenic phototrophs such as cyanobacteria have been used to produce biofuels using CO2. However, oxygen generation during oxygenic photosynthesis adversely affects biofuel production efficiency. To producen-butanol (biofuel) from CO2, here we introduce ann-butanol biosynthesis pathway into an anoxygenic (non-oxygen evolving) photoautotroph,Rhodopseudomonas palustrisTIE-1 (TIE-1). Using different carbon, nitrogen, and electron sources, we achieven-butanol production in wild-type TIE-1 and mutants lacking electron-consuming (nitrogen-fixing) or acetyl-CoA-consuming (polyhydroxybutyrate and glycogen synthesis) pathways. The mutant lacking the nitrogen-fixing pathway produce the highestn-butanol. Coupled with novel hybrid bioelectrochemical platforms, this mutant producesn-butanol using CO2, solar panel-generated electricity, and light with high electrical energy conversion efficiency. Overall, this approach showcases TIE-1 as an attractive microbial chassis for carbon-neutraln-butanol bioproduction using sustainable, renewable, and abundant resources. 
                        more » 
                        « less   
                    
                            
                            A hybrid inorganic–biological artificial photosynthesis system for energy-efficient food production
                        
                    
    
            Abstract Artificial photosynthesis systems are proposed as an efficient alternative route to capture CO 2 to produce additional food for growing global demand. Here a two-step CO 2 electrolyser system was developed to produce a highly concentrated acetate stream with a 57% carbon selectivity (CO 2 to acetate), allowing its direct use for the heterotrophic cultivation of yeast, mushroom-producing fungus and a photosynthetic green alga, in the dark without inputs from biological photosynthesis. An evaluation of nine crop plants found that carbon from exogenously supplied acetate incorporates into biomass through major metabolic pathways. Coupling this approach to existing photovoltaic systems could increase solar-to-food energy conversion efficiency by about fourfold over biological photosynthesis, reducing the solar footprint required. This technology allows for a reimagination of how food can be produced in controlled environments. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1922642
- PAR ID:
- 10352489
- Date Published:
- Journal Name:
- Nature Food
- Volume:
- 3
- Issue:
- 6
- ISSN:
- 2662-1355
- Page Range / eLocation ID:
- 461 to 471
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            As climate mitigation efforts lag, dependence on anthropogenic CO2removal increases. Enhanced rock weathering (ERW) is a rapidly growing CO2removal approach. In terrestrial ERW, crushed rocks are spread on land where they react with CO2and water, forming dissolved inorganic carbon (DIC) and alkalinity. For long-term sequestration, these products must travel through rivers to oceans, where carbon remains stored for over 10,000 years. Carbon and alkalinity can be lost during river transport, reducing ERW efficacy. However, the ability of biological processes, such as aquatic photosynthesis, to affect the fate of DIC and alkalinity within rivers has been overlooked. Our analysis indicates that within a stream-order segment, aquatic photosynthesis uptakes 1%–30% of DIC delivered by flow for most locations. The effect of this uptake on ERW efficacy, however, depends on the cell-membrane transport mechanism and the fate of photosynthetic carbon. Different pathways can decrease just DIC, DIC and alkalinity, or just alkalinity, and the relative importance of each is unknown. Further, data show that expected river chemistry changes from ERW may stimulate photosynthesis, amplifying the importance of these biological processes. We argue that estimating ERW’s carbon sequestration potential requires consideration and better understanding of biological processes in rivers.more » « less
- 
            A grand challenge facing society is climate change caused mainly by rising CO 2 concentration in Earth’s atmosphere. Terrestrial plants are linchpins in global carbon cycling, with a unique capability of capturing CO 2 via photosynthesis and translocating captured carbon to stems, roots, and soils for long-term storage. However, many researchers postulate that existing land plants cannot meet the ambitious requirement for CO 2 removal to mitigate climate change in the future due to low photosynthetic efficiency, limited carbon allocation for long-term storage, and low suitability for the bioeconomy. To address these limitations, there is an urgent need for genetic improvement of existing plants or construction of novel plant systems through biosystems design (or biodesign). Here, we summarize validated biological parts (e.g., protein-encoding genes and noncoding RNAs) for biological engineering of carbon dioxide removal (CDR) traits in terrestrial plants to accelerate land-based decarbonization in bioenergy plantations and agricultural settings and promote a vibrant bioeconomy. Specifically, we first summarize the framework of plant-based CDR (e.g., CO 2 capture, translocation, storage, and conversion to value-added products). Then, we highlight some representative biological parts, with experimental evidence, in this framework. Finally, we discuss challenges and strategies for the identification and curation of biological parts for CDR engineering in plants.more » « less
- 
            Abstract Where does the carbon released by burning fossil fuels go? Currently, ocean and land systems remove about half of the CO 2 emitted by human activities; the remainder stays in the atmosphere. These removal processes are sensitive to feedbacks in the energy, carbon, and water cycles that will change in the future. Observing how much carbon is taken up on land through photosynthesis is complicated because carbon is simultaneously respired by plants, animals, and microbes. Global observations from satellites and air samples suggest that natural ecosystems take up about as much CO 2 as they emit. To match the data, our land models generate imaginary Earths where carbon uptake and respiration are roughly balanced, but the absolute quantities of carbon being exchanged vary widely. Getting the magnitude of the flux is essential to make sure our models are capturing the right pattern for the right reasons. Combining two cutting-edge tools, carbonyl sulfide (OCS) and solar-induced fluorescence (SIF), will help develop an independent answer of how much carbon is being taken up by global ecosystems. Photosynthesis requires CO 2 , light, and water. OCS provides a spatially and temporally integrated picture of the “front door” of photosynthesis, proportional to CO 2 uptake and water loss through plant stomata. SIF provides a high-resolution snapshot of the “side door,” scaling with the light captured by leaves. These two independent pieces of information help us understand plant water and carbon exchange. A coordinated effort to generate SIF and OCS data through satellite, airborne, and ground observations will improve our process-based models to predict how these cycles will change in the future.more » « less
- 
            For millennia, humanity has depended on photosynthesis to cultivate crops and feed a growing population. However, the escalating challenges of climate change and global hunger now compel us to surpass the efficiency limitations of photosynthesis. Here, we propose the adoption of an electro-agriculture (electro-ag) framework that combines CO2 electrolysis with biological systems to enhance food production efficiency. Adopting a food system based entirely on electro-ag could reduce United States agricultural land use by 88%, freeing nearly half of the country’s land for ecosystem restoration and natural carbon sequestration. Electro-ag bypasses traditional photosynthesis, enabling food cultivation in non-arable urban centers, arid deserts, and even outer space environments. We offer a new strategy that improves energy efficiency by an order of magnitude compared with photosynthesis, along with essential guidance for developing electro-ag focused on staple crops, to maximize benefits for regions facing food insecurity. This innovative approach to agriculture holds significant promise in reducing environmental impacts, streamlining supply chains, and addressing the global food crisis.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    