skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1922642

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract BackgroundThe sweet potato whitefly (Bemisia tabaci) is a globally important insect pest that damages crops through direct feeding and by transmitting viruses. CurrentB. tabacimanagement revolves around the use of insecticides, which are economically and environmentally costly. Host plant resistance is a sustainable option to reduce the impact of whiteflies, but progress in deploying resistance in crops has been slow. A major obstacle is the high cost and low throughput of screening plants forB. tabaciresistance. Oviposition rate is a popular metric for host plant resistance toB. tabacibecause it does not require tracking insect development through the entire life cycle, but accurate quantification is still limited by difficulties in observingB. tabacieggs, which are microscopic and translucent. The goal of our study was to improve quantification ofB. tabacieggs on several important crop species: cassava, cowpea, melon, sweet potato and tomato. ResultsWe tested a selective staining process originally developed for leafhopper eggs: submerging the leaves in McBryde’s stain (acetic acid, ethanol, 0.2% aqueous acid Fuchsin, water; 20:19:2:1) for three days, followed by clearing under heat and pressure for 15 min in clearing solution (LGW; lactic acid, glycerol, water; 17:20:23). With a less experienced individual counting the eggs,B. tabaciegg counts increased after staining across all five crops. With a more experienced counter, egg counts increased after staining on melons, tomatoes, and cowpeas. For all five crops, there was significantly greater agreement on egg counts across the two counting individuals after the staining process. The staining method worked particularly well on melon, where egg counts universally increased after staining for both counting individuals. ConclusionsSelective staining aids visualization ofB. tabacieggs across multiple crop plants, particularly species where leaf morphological features obscure eggs, such as melons and tomatoes. This method is broadly applicable to research questions requiring accurate quantification ofB. tabacieggs, including phenotyping forB. tabaciresistance. 
    more » « less
  2. Abstract Visualizing spatial assay data in anatomical images is vital for understanding biological processes in cell, tissue, and organ organizations. Technologies requiring this functionality include traditional one-at-a-time assays, and bulk and single-cell omics experiments, including RNA-seq and proteomics. The spatialHeatmap software provides a series of powerful new methods for these needs, and allows users to work with adequately formatted anatomical images from public collections or custom images. It colors the spatial features (e.g. tissues) annotated in the images according to the measured or predicted abundance levels of biomolecules (e.g. mRNAs) using a color key. This core functionality of the package is called a spatial heatmap plot. Single-cell data can be co-visualized in composite plots that combine spatial heatmaps with embedding plots of high-dimensional data. The resulting spatial context information is essential for gaining insights into the tissue-level organization of single-cell data, or vice versa. Additional core functionalities include the automated identification of biomolecules with spatially selective abundance patterns and clusters of biomolecules sharing similar abundance profiles. To appeal to both non-expert and computational users, spatialHeatmap provides a graphical and a command-line interface, respectively. It is distributed as a free, open-source Bioconductor package (https://bioconductor.org/packages/spatialHeatmap) that users can install on personal computers, shared servers, or cloud systems. 
    more » « less
  3. Abstract High throughput CRISPR screens are revolutionizing the way scientists unravel the genetic underpinnings of engineered and evolved phenotypes. One of the critical challenges in accurately assessing screening outcomes is accounting for the variability in sgRNA cutting efficiency. Poorly active guides targeting genes essential to screening conditions obscure the growth defects that are expected from disrupting them. Here, we develop acCRISPR, an end-to-end pipeline that identifies essential genes in pooled CRISPR screens using sgRNA read counts obtained from next-generation sequencing. acCRISPR uses experimentally determined cutting efficiencies for each guide in the library to provide an activity correction to the screening outcomes via calculation of an optimization metric, thus determining the fitness effect of disrupted genes. CRISPR-Cas9 and -Cas12a screens were carried out in the non-conventional oleaginous yeastYarrowia lipolyticaand acCRISPR was used to determine a high-confidence set of essential genes for growth under glucose, a common carbon source used for the industrial production of oleochemicals. acCRISPR was also used in screens quantifying relative cellular fitness under high salt conditions to identify genes that were related to salt tolerance. Collectively, this work presents an experimental-computational framework for CRISPR-based functional genomics studies that may be expanded to other non-conventional organisms of interest. 
    more » « less
  4. Abstract A general method to generate biosensors for user-defined molecules could provide detection tools for a wide range of biological applications. Here, we describe an approach for the rapid engineering of biosensors using PYR1 (Pyrabactin Resistance 1), a plant abscisic acid (ABA) receptor with a malleable ligand-binding pocket and a requirement for ligand-induced heterodimerization, which facilitates the construction of sense–response functions. We applied this platform to evolve 21 sensors with nanomolar to micromolar sensitivities for a range of small molecules, including structurally diverse natural and synthetic cannabinoids and several organophosphates. X-ray crystallography analysis revealed the mechanistic basis for new ligand recognition by an evolved cannabinoid receptor. We demonstrate that PYR1-derived receptors are readily ported to various ligand-responsive outputs, including enzyme-linked immunosorbent assay (ELISA)-like assays, luminescence by protein-fragment complementation and transcriptional circuits, all with picomolar to nanomolar sensitivity. PYR1 provides a scaffold for rapidly evolving new biosensors for diverse sense–response applications. 
    more » « less
  5. Abstract DWARF14 (D14) is an ɑ/β‐hydrolase and receptor for the plant hormone strigolactone (SL) in angiosperms. Upon SL perception, D14 works with MORE AXILLARY GROWTH2 (MAX2) to trigger polyubiquitination and degradation of DWARF53(D53)‐type proteins in the SUPPRESSOR OF MAX2 1‐LIKE (SMXL) family. We used CRISPR‐Cas9 to generate knockout alleles of the two homoeologousD14genes in theNicotiana benthamianagenome. TheNbd14a,bdouble mutant had several phenotypes that are consistent with the loss of SL perception in other plants, including increased axillary bud outgrowth, reduced height, shortened petioles, and smaller leaves. A ratiometric fluorescent reporter system was used to monitor degradation of SMXL7 fromArabidopsis thaliana(AtSMXL7) after transient expression inN. benthamianaand treatment with the strigolactone analog GR24. AtSMXL7 was degraded after treatment with GR245DS, which has the stereochemical configuration of natural SLs, as well as its enantiomer GR24ent‐5DS. InNbd14a,bleaves, AtSMXL7 abundance was unaffected byrac‐GR24 or either GR24 stereoisomer. Transient coexpression of AtD14 with the AtSMXL7 reporter inNbd14a,brestored the degradation response torac‐GR24, but required an active catalytic triad. We used this platform to evaluate the ability of several AtD14 mutants that had not been characterized in plants to target AtSMXL7 for degradation. 
    more » « less
  6. Summary Recent discoveries show that fungi can take up environmental RNA, which can then silence fungal genes through environmental RNA interference. This discovery prompted the development of Spray‐Induced Gene Silencing (SIGS) for plant disease management. In this study, we aimed to determine the efficacy of SIGS across a variety of eukaryotic microbes. We first examined the efficiency of RNA uptake in multiple pathogenic and non‐pathogenic fungi, and an oomycete pathogen. We observed efficient double‐stranded RNA (dsRNA) uptake in the fungal plant pathogensBotrytis cinerea,Sclerotinia sclerotiorum,Rhizoctonia solani,Aspergillus nigerandVerticillium dahliae, but no uptake inColletotrichum gloeosporioides, and weak uptake in a beneficial fungus,Trichoderma virens. For the oomycete plant pathogen,Phytophthora infestans, RNA uptake was limited and varied across different cell types and developmental stages. Topical application of dsRNA targeting virulence‐related genes in pathogens with high RNA uptake efficiency significantly inhibited plant disease symptoms, whereas the application of dsRNA in pathogens with low RNA uptake efficiency did not suppress infection. Our results have revealed that dsRNA uptake efficiencies vary across eukaryotic microbe species and cell types. The success of SIGS for plant disease management can largely be determined by the pathogen’s RNA uptake efficiency. 
    more » « less
  7. Photoactivation of the plant photoreceptor and thermosensor phytochrome B (PHYB) triggers its condensation into subnuclear membraneless organelles named photobodies (PBs). However, the function of PBs in PHYB signaling remains frustratingly elusive. Here, we found that PHYB recruits PHYTOCHROME-INTERACTING FACTOR 5 (PIF5) to PBs. Surprisingly, PHYB exerts opposing roles in degrading and stabilizing PIF5. Perturbing PB size by overproducing PHYB provoked a biphasic PIF5 response: while a moderate increase in PHYB enhanced PIF5 degradation, further elevating the PHYB level stabilized PIF5 by retaining more of it in enlarged PBs. Conversely, reducing PB size by dim light, which enhanced PB dynamics and nucleoplasmic PHYB and PIF5, switched the balance towards PIF5 degradation. Together, these results reveal that PB formation spatially segregates two antagonistic PHYB signaling actions – PIF5 stabilization in PBs and PIF5 degradation in the surrounding nucleoplasm – which could enable an environmentally sensitive, counterbalancing mechanism to titrate nucleoplasmic PIF5 and environmental responses. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  8. Free, publicly-accessible full text available July 29, 2025
  9. Free, publicly-accessible full text available July 3, 2025
  10. Division plane positioning is crucial for proper growth and development in many organisms. In plants, the division plane is established before mitosis, by accumulation of a cytoskeletal structure called the preprophase band (PPB). The PPB is thought to be essential for recruitment of division site-localized proteins, which remain at the division site after the PPB disassembles. Here, we show that the division site-localized protein TANGLED1 (TAN1) is recruited independently of the PPB to the cell cortex by the plant cytokinetic machinery, the phragmoplast, from experiments using both the PPB-defective mutant discordia1 (dcd1) and chemical treatments that disrupt the phragmoplast in maize. TAN1 recruitment to de novo sites on the cortex is partially dependent on intact actin filaments and the myosin XI motor protein OPAQUE1 (O1). These data imply a yet unknown role for TAN1 and possibly other division site-localized proteins during the last stages of cell division when the phragmoplast touches the cell cortex to complete cytokinesis. 
    more » « less
    Free, publicly-accessible full text available June 15, 2025