skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Establishment of strigolactone-producing bacterium-yeast consortium
Strigolactones (SLs) are a class of phytohormones playing diverse roles in plant growth and development, yet the limited access to SLs is largely impeding SL-based foundational investigations and applications. Here, we developed Escherichia coli – Saccharomyces cerevisiae consortia to establish a microbial biosynthetic platform for the synthesis of various SLs, including carlactone, carlactonoic acid, 5-deoxystrigol (5DS; 6.65 ± 1.71 μg/liter), 4-deoxyorobanchol (3.46 ± 0.28 μg/liter), and orobanchol (OB; 19.36 ± 5.20 μg/liter). The SL-producing platform enabled us to conduct functional identification of CYP722Cs from various plants as either OB or 5DS synthase. It also allowed us to quantitatively compare known variants of plant SL biosynthetic enzymes in the microbial system. The titer of 5DS was further enhanced through pathway engineering to 47.3 μg/liter. This work provides a unique platform for investigating SL biosynthesis and evolution and lays the foundation for developing SL microbial production process.  more » « less
Award ID(s):
1922642
PAR ID:
10352492
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
7
Issue:
38
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Strigol is the first identified and one of the most important strigolactones (SLs), but the biosynthetic pathway remains elusive. We functionally identified a strigol synthase (cytochrome P450 711A enzyme) in the Prunus genus through rapid gene screening in a set of SL‐producing microbial consortia, and confirmed its unique catalytic activity (catalyzing multistep oxidation) through substrate feeding experiments and mutant analysis. We also reconstructed the biosynthetic pathway of strigol in Nicotiana benthamiana and reported the total biosynthesis of strigol in the Escherichia coli ‐yeast consortium, from the simple sugar xylose, which paves the way for large‐scale production of strigol. As proof of concept, strigol and orobanchol were detected in Prunus persica root extrudes. This demonstrated a successful prediction of metabolites produced in plants through gene function identification, highlighting the importance of deciphering the sequence–function correlation of plant biosynthetic enzymes to more accurately predicate plant metabolites without metabolic analysis. This finding revealed the evolutionary and functional diversity of CYP711A (MAX1) in SL biosynthesis, which can synthesize different stereo‐configurations of SLs (strigol‐ or orobanchol‐type). This work again emphasizes the importance of microbial bioproduction platform as an efficient and handy tool to functionally identify plant metabolism. 
    more » « less
  2. Strigolactones (SLs) are methylbutenolide molecules derived from β-carotene through an intermediate carlactonoic acid (CLA). Canonical SLs act as signals to microbes and plants, whereas noncanonical SLs are primarily plant hormones. The cytochrome P450 CYP722C catalyzes a critical step, converting CLA to canonical SLs in most angiosperms. Using synthetic biology, we investigated the function ofCYP722A, an evolutionary predecessor ofCYP722C. CYP722A converts CLA into 16-hydroxy-CLA (16-OH-CLA), a noncanonical SL detected exclusively in the shoots of various flowering plants. 16-OH-CLA application restores control of shoot branching to SL-deficient mutants inArabidopsis thalianaand is perceived by the SL signaling pathway. We hypothesize that biosynthesis of 16-OH-CLA by CYP722A was a metabolic stepping stone in the evolution of canonical SLs that mediate rhizospheric signaling in many flowering plants. 
    more » « less
  3. Abstract Strigolactones (SLs) are a unique and novel class of phytohormones that regulate numerous processes of growth and development in plants. Besides their endogenous functions as hormones, SLs are exuded by plant roots to stimulate critical interactions with symbiotic fungi but can also be exploited by parasitic plants to trigger their seed germination. In the past decade, since their discovery as phytohormones, rapid progress has been made in understanding the SL biosynthesis and signaling pathway. Of particular interest are the diversification of natural SLs and their exact mode of perception, selectivity, and hydrolysis by their dedicated receptors in plants. Here we provide an overview of the emerging field of SL perception with a focus on the diversity of canonical, non-canonical, and synthetic SL probes. Moreover, this review offers useful structural insights into SL perception, the precise molecular adaptations that define receptor-ligand specificities, and the mechanisms of SL hydrolysis and its attenuation by downstream signaling components. 
    more » « less
  4. Abstract Many root parasitic plants in the Orobanchaceae use host-derived strigolactones (SLs) as germination cues. This adaptation facilitates attachment to a host and is particularly important for the success of obligate parasitic weeds that cause substantial crop losses globally. Parasite seeds sense SLs through ‘divergent’ KARRIKIN INSENSITIVE2 (KAI2d)/HYPOSENSITIVE TO LIGHT α/β-hydrolases that have undergone substantial duplication and diversification in Orobanchaceae genomes. After germination, chemotropic growth of parasite roots toward a SL source also occurs in some species. We investigated which of the seven KAI2d genes found in a facultative hemiparasite, Phtheirospermum japonicum, may enable chemotropic responses to SLs. To do so, we developed a triple mutant Nbd14a,b kai2i line of Nicotiana benthamiana in which SL-induced degradation of SUPPRESSOR OF MORE AXILLARY GROWTH2 (MAX2) 1 (SMAX1), an immediate downstream target of KAI2 signaling, is disrupted. In combination with a transiently expressed, ratiometric reporter of SMAX1 protein abundance, this mutant forms a system for the functional analysis of parasite KAI2d proteins in a plant cellular context. Using this system, we unexpectedly found three PjKAI2d proteins that do not trigger SMAX1 degradation in the presence of SLs. Instead, these PjKAI2d proteins inhibit the perception of low SL concentrations by SL-responsive PjKAI2d in a dominant-negative manner that depends upon an active catalytic triad. Similar dominant-negative KAI2d paralogs were identified in an obligate hemiparasitic weed, Striga hermonthica. These proteins suggest a mechanism for attenuating SL signaling in parasites, which might be used to enhance the perception of shallow SL gradients during root growth toward a host or to restrict germination responses to specific SLs. 
    more » « less
  5. Abstract Background and AimsNitrogen (N) is an essential macronutrient that can limit plant development and crop yield through widespread physiological and molecular impacts. In maize, N-starvation enhances biosynthesis and exudation of strigolactones (SLs) in a process reversible by nitrate addition and consequent repression of genes for SL biosynthesis. MethodsIn the present study, a maize mutant deficient in SL biosynthesis (zmccd8) allowed an in-depth analysis of SL contributions under low N. Both hydroponic and field conditions were used to better characterize the response of the mutant to N availability. ResultsThe severity of responses to N-limitation by the SL-deficientzmccd8mutant extended from growth parameters to content of iron, sulfur, protein, and photosynthetic pigments, as well as pronounced impacts on expression of key genes, which could be crucial molecular target for the SL-mediated acclimatation to N shortage. ConclusionsOur results demonstrate that SLs are critical for physiological acclimation to N deficiency by maize and identify central players in this action. Further contributions by iron and sulfur are implicated in the complex pathway underlying SL modulation of responses to N-deprivation, thus widening our knowledge on SL functioning and providing new hints on their potential use in agriculture. 
    more » « less