skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Snowmass2021 Cosmic Frontier: Synergies between dark matter searches and multiwavelength/multimessenger astrophysics
This whitepaper focuses on the astrophysical systematics which are encountered in dark matter searches. Oftentimes in indirect and also in direct dark matter searches, astrophysical systematics are a major limiting factor to sensitivity to dark matter. Just as there are many forms of dark matter searches, there are many forms of backgrounds. We attempt to cover the major systematics arising in dark matter searches using photons -- radio and gamma rays -- to cosmic rays, neutrinos and gravitational waves. Examples include astrophysical sources of cosmic messengers and their interactions which can mimic dark matter signatures. In turn, these depend on commensurate studies in understanding the cosmic environment -- gas distributions, magnetic field configurations -- as well as relevant nuclear astrophysics. We also cover the astrophysics governing celestial bodies and galaxies used to probe dark matter, from black holes to dwarf galaxies. Finally, we cover astrophysical backgrounds related to probing the dark matter distribution and kinematics, which impact a wide range of dark matter studies. In the future, the rise of multi-messenger astronomy, and novel analysis methods to exploit it for dark matter, will offer various strategic ways to continue to enhance our understanding of astrophysical backgrounds to deliver improved sensitivity to dark matter.  more » « less
Award ID(s):
2014215
PAR ID:
10352553
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
ArXivorg
Volume:
arXiv:2203.06781
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Exploring dark matter via observations of extreme astrophysical environments -- defined here as heavy compact objects such as white dwarfs, neutron stars, and black holes, as well as supernovae and compact object merger events -- has been a major field of growth since the last Snowmass process. Theoretical work has highlighted the utility of current and near-future observatories to constrain novel dark matter parameter space across the full mass range. This includes gravitational wave instruments and observatories spanning the electromagnetic spectrum, from radio to gamma-rays. While recent searches already provide leading sensitivity to various dark matter models, this work also highlights the need for theoretical astrophysics research to better constrain the properties of these extreme astrophysical systems. The unique potential of these search signatures to probe dark matter adds motivation to proposed next-generation astronomical and gravitational wave instruments. Note: Contribution to Snowmass 2021 -- CF3. Dark Matter: Cosmic Probes 
    more » « less
  2. Abstract TheFermiLarge Area Telescope (Fermi-LAT) has been widely used to search for Weakly Interacting Massive Particle (WIMP) dark matter signals due to its unparalleled sensitivity in the GeV energy band. The leading constraints for WIMP byFermi-LAT are obtained from the analyses of dwarf spheroidal galaxies within the Local Group, which are compelling targets for dark matter searches due to their relatively low astrophysical backgrounds and high dark matter content. In the meantime, the search for heavy dark matter with masses above TeV remains a compelling and relatively unexplored frontier. In this study, we utilize 14-yearFermi-LAT data to search for dark matter annihilation and decay signals in 8 classical dwarf spheroidal galaxies within the Local Group. We consider secondary emission caused by electromagnetic cascades of prompt gamma rays and electrons/positrons from dark matter, which enables us to extend the search withFermi-LAT to heavier dark matter cases. We also update the dark matter subhalo model with informative priors respecting the fact that they reside in subhalos of our Milky Way halo aiming to enhance the robustness of our results. We place constraints on dark matter annihilation cross section and decay lifetime for dark matter masses ranging from 103GeV to 1011GeV, where our limits are more stringent than those obtained by many other high-energy gamma-ray instruments. 
    more » « less
  3. Abstract The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector. 
    more » « less
  4. Abstract Opportunities for searches for phenomena beyond the Standard Model (BSM) using heavy-ions beams at high energies are outlined. Different BSM searches proposed in the last years in collisions of heavy ions, mostly at the Large Hadron Collider, are summarized. A few concrete selected cases are reviewed including searches for axion-like particles, anomalous τ electromagnetic moments, magnetic monopoles, and dark photons. Expectations for the achievable sensitivities of these searches in the coming years are given. Studies of CP violation in hot and dense QCD matter and connections to ultrahigh-energy cosmic rays physics are also mentioned. 
    more » « less
  5. Abstract Galaxies can be characterized by many internal properties such as stellar mass, gas metallicity, and star formation rate. We quantify the amount of cosmological and astrophysical information that the internal properties of individual galaxies and their host dark matter halos contain. We train neural networks using hundreds of thousands of galaxies from 2000 state-of-the-art hydrodynamic simulations with different cosmologies and astrophysical models of the CAMELS project to perform likelihood-free inference on the value of the cosmological and astrophysical parameters. We find that knowing the internal properties of a single galaxy allows our models to infer the value of Ω m , at fixed Ω b , with a ∼10% precision, while no constraint can be placed on σ 8 . Our results hold for any type of galaxy, central or satellite, massive or dwarf, at all considered redshifts, z ≤ 3, and they incorporate uncertainties in astrophysics as modeled in CAMELS. However, our models are not robust to changes in subgrid physics due to the large intrinsic differences the two considered models imprint on galaxy properties. We find that the stellar mass, stellar metallicity, and maximum circular velocity are among the most important galaxy properties to determine the value of Ω m . We believe that our results can be explained by considering that changes in the value of Ω m , or potentially Ω b /Ω m , affect the dark matter content of galaxies, which leaves a signature in galaxy properties distinct from the one induced by galactic processes. Our results suggest that the low-dimensional manifold hosting galaxy properties provides a tight direct link between cosmology and astrophysics. 
    more » « less