skip to main content

This content will become publicly available on March 13, 2023

Title: Snowmass2021 Cosmic Frontier: Synergies between dark matter searches and multiwavelength/multimessenger astrophysics
This whitepaper focuses on the astrophysical systematics which are encountered in dark matter searches. Oftentimes in indirect and also in direct dark matter searches, astrophysical systematics are a major limiting factor to sensitivity to dark matter. Just as there are many forms of dark matter searches, there are many forms of backgrounds. We attempt to cover the major systematics arising in dark matter searches using photons -- radio and gamma rays -- to cosmic rays, neutrinos and gravitational waves. Examples include astrophysical sources of cosmic messengers and their interactions which can mimic dark matter signatures. In turn, these depend on commensurate studies in understanding the cosmic environment -- gas distributions, magnetic field configurations -- as well as relevant nuclear astrophysics. We also cover the astrophysics governing celestial bodies and galaxies used to probe dark matter, from black holes to dwarf galaxies. Finally, we cover astrophysical backgrounds related to probing the dark matter distribution and kinematics, which impact a wide range of dark matter studies. In the future, the rise of multi-messenger astronomy, and novel analysis methods to exploit it for dark matter, will offer various strategic ways to continue to enhance our understanding of astrophysical backgrounds to deliver improved sensitivity more » to dark matter. « less
Authors:
; ; ; ; ; ; ; ; ; ;
Award ID(s):
2014215
Publication Date:
NSF-PAR ID:
10352553
Journal Name:
ArXivorg
Volume:
arXiv:2203.06781
ISSN:
2331-8422
Sponsoring Org:
National Science Foundation
More Like this
  1. Exploring dark matter via observations of extreme astrophysical environments -- defined here as heavy compact objects such as white dwarfs, neutron stars, and black holes, as well as supernovae and compact object merger events -- has been a major field of growth since the last Snowmass process. Theoretical work has highlighted the utility of current and near-future observatories to constrain novel dark matter parameter space across the full mass range. This includes gravitational wave instruments and observatories spanning the electromagnetic spectrum, from radio to gamma-rays. While recent searches already provide leading sensitivity to various dark matter models, this work also highlights the need for theoretical astrophysics research to better constrain the properties of these extreme astrophysical systems. The unique potential of these search signatures to probe dark matter adds motivation to proposed next-generation astronomical and gravitational wave instruments. Note: Contribution to Snowmass 2021 -- CF3. Dark Matter: Cosmic Probes
  2. ABSTRACT

    Many sources contribute to the diffuse gamma-ray background (DGRB), including star forming galaxies, active galactic nuclei, and cosmic ray interactions in the Milky Way. Exotic sources, such as dark matter annihilation, may also make some contribution. The photon counts-in-pixels distribution is a powerful tool for analysing the DGRB and determining the relative contributions of different sources. However, including photon energy information in a likelihood analysis of the counts-in-pixels distribution quickly becomes computationally intractable as the number of source types and energy bins increase. Here, we apply the likelihood-free method of approximate Bayesian computation (ABC) to the problem. We consider a mock analysis that includes contributions from dark matter annihilation in Galactic subhaloes as well as astrophysical backgrounds. We show that our results using ABC are consistent with the exact likelihood when energy information is discarded, and that significantly tighter parameter constraints can be obtained with ABC when energy information is included. ABC presents a powerful tool for analysing the DGRB and understanding its varied origins.

  3. Ultra-high-energy (UHE) photons are an important tool for studying the high-energy Universe. A plausible source of photons with exa-eV (EeV) energy is provided by UHE cosmic rays (UHECRs) undergoing the Greisen–Zatsepin–Kuzmin process (Greisen 1966; Zatsepin & Kuzmin 1966) or pair production process (Blumenthal 1970) on a cosmic background radiation. In this context, the EeV photons can be a probe of both UHECR mass composition and the distribution of their sources (Gelmini, Kalashev & Semikoz 2008; Hooper, Taylor & Sarkar 2011). At the same time, the possible flux of photons produced by UHE protons in the vicinity of their sources by pion photoproduction or inelastic nuclear collisions would be noticeable only for relatively near sources, as the attenuation length of UHE photons is smaller than that of UHE protons; see, for example, Bhattacharjee & Sigl (2000) for a review. There also exists a class of so-called top-down models of UHECR generation that efficiently produce the UHE photons, for instance by the decay of heavy dark-matter particles (Berezinsky, Kachelriess & Vilenkin 1997; Kuzmin & Rubakov 1998) or by the radiation from cosmic strings (Berezinsky, Blasi & Vilenkin 1998). The search for the UHE photons was shown to be the most sensitive methodmore »of indirect detection of heavy dark matter (Kalashev & Kuznetsov 2016, 2017; Kuznetsov 2017; Kachelriess, Kalashev & Kuznetsov 2018; Alcantara, Anchordoqui & Soriano 2019). Another fundamental physics scenario that could be tested with UHE photons (Fairbairn, Rashba & Troitsky 2011) is the photon mixing with axion-like particles (Raffelt & Stodolsky 1988), which could be responsible for the correlation of UHECR events with BL Lac type objects observed by the High Resolution Fly’s Eye (HiRes) experiment (Gorbunov et al. 2004; Abbasi et al. 2006). In most of these scenarios, a clustering of photon arrival directions, rather than diffuse distribution, is expected, so point-source searches can be a suitable test for photon - axion-like particle mixing models. Finally, UHE photons could also be used as a probe for the models of Lorentz-invariance violation (Coleman & Glashow 1999; Galaverni & Sigl 2008; Maccione, Liberati & Sigl 2010; Rubtsov, Satunin & Sibiryakov 2012, 2014). The Telescope Array (TA; Tokuno et al. 2012; Abu-Zayyad et al. 2013c) is the largest cosmic ray experiment in the Northern Hemisphere. It is located at 39.3° N, 112.9° W in Utah, USA. The observatory includes a surface detector array (SD) and 38 fluorescence telescopes grouped into three stations. The SD consists of 507 stations that contain plastic scintillators, each with an area of 3 m2 (SD stations). The stations are placed in the square grid with 1.2 km spacing and cover an area of ∼700 km2. The TA SD is capable of detecting extensive air showers (EASs) in the atmosphere caused by cosmic particles of EeV and higher energies. The TA SD has been operating since 2008 May. A hadron-induced EAS significantly differs from an EAS induced by a photon because the depth of the shower maximum Xmax for a photon shower is larger, and a photon shower contains fewer muons and has a more curved front (see Risse & Homola 2007 for a review). The TA SD stations are sensitive to both muon and electromagnetic components of the shower and therefore can be triggered by both hadron-induced and photon-induced EAS events. In the present study, we use 9 yr of TA SD data for a blind search for point sources of UHE photons. We utilize the statistics of the SD data, which benefit from a high duty cycle. The full Monte Carlo (MC) simulation of proton-induced and photon-induced EAS events allows us to perform the photon search up to the highest accessible energies, E ≳ 1020 eV. As the main tool for the present photon search, we use a multivariate analysis based on a number of SD parameters that make it possible to distinguish between photon and hadron primaries. While searches for diffuse UHE photons were performed by several EAS experiments, including Haverah Park (Ave et al. 2000), AGASA (Shinozaki et al. 2002; Risse et al. 2005), Yakutsk (Rubtsov et al. 2006; Glushkov et al. 2007, 2010), Pierre Auger (Abraham et al. 2007, 2008a; Bleve 2016; Aab et al. 2017c) and TA (Abu-Zayyad et al. 2013b; Abbasi et al. 2019a), the search for point sources of UHE photons has been done only by the Pierre Auger Observatory (Aab et al. 2014, 2017a). The latter searches were based on hybrid data and were limited to the 1017.3 < E < 1018.5 eV energy range. In the present paper, we use the TA SD data alone. We perform the searches in five energy ranges: E > 1018, E > 1018.5, E > 1019, E > 1019.5 and E > 1020 eV. We find no significant evidence of photon point sources in all energy ranges and we set the point-source flux upper limits from each direction in the TA field of view (FOV). The search for unspecified neutral particles was also previously performed by the TA (Abbasi et al. 2015). The limit on the point-source flux of neutral particles obtained in that work is close to the present photon point-source flux limits.« less
  4. Abstract Galaxies can be characterized by many internal properties such as stellar mass, gas metallicity, and star formation rate. We quantify the amount of cosmological and astrophysical information that the internal properties of individual galaxies and their host dark matter halos contain. We train neural networks using hundreds of thousands of galaxies from 2000 state-of-the-art hydrodynamic simulations with different cosmologies and astrophysical models of the CAMELS project to perform likelihood-free inference on the value of the cosmological and astrophysical parameters. We find that knowing the internal properties of a single galaxy allows our models to infer the value of Ω m , at fixed Ω b , with a ∼10% precision, while no constraint can be placed on σ 8 . Our results hold for any type of galaxy, central or satellite, massive or dwarf, at all considered redshifts, z ≤ 3, and they incorporate uncertainties in astrophysics as modeled in CAMELS. However, our models are not robust to changes in subgrid physics due to the large intrinsic differences the two considered models imprint on galaxy properties. We find that the stellar mass, stellar metallicity, and maximum circular velocity are among the most important galaxy properties to determine the valuemore »of Ω m . We believe that our results can be explained by considering that changes in the value of Ω m , or potentially Ω b /Ω m , affect the dark matter content of galaxies, which leaves a signature in galaxy properties distinct from the one induced by galactic processes. Our results suggest that the low-dimensional manifold hosting galaxy properties provides a tight direct link between cosmology and astrophysics.« less
  5. Abstract Understanding the halo–galaxy connection is fundamental in order to improve our knowledge on the nature and properties of dark matter. In this work, we build a model that infers the mass of a halo given the positions, velocities, stellar masses, and radii of the galaxies it hosts. In order to capture information from correlations among galaxy properties and their phase space, we use Graph Neural Networks (GNNs), which are designed to work with irregular and sparse data. We train our models on galaxies from more than 2000 state-of-the-art simulations from the Cosmology and Astrophysics with MachinE Learning Simulations project. Our model, which accounts for cosmological and astrophysical uncertainties, is able to constrain the masses of the halos with a ∼0.2 dex accuracy. Furthermore, a GNN trained on a suite of simulations is able to preserve part of its accuracy when tested on simulations run with a different code that utilizes a distinct subgrid physics model, showing the robustness of our method. The PyTorch Geometric implementation of the GNN is publicly available on GitHub ( https://github.com/PabloVD/HaloGraphNet ).