skip to main content


Search for: All records

Award ID contains: 2014215

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc>

    We study further the duality between semiclassical AdS3and formal CFT2ensembles. First, we study torus wormholes (Maldacena-Maoz wormholes with two torus boundaries) with one insertion or two insertions on each boundary and find that they give non-decaying contribution to the product of two torus one-point or two-point functions at late-time. Second, we study the ℤ2quotients of a torus wormhole such that the outcome has one boundary. We identify quotients that give non-decaying contributions to the torus two-point function at late-time.

    We comment on reflection (R) or time-reversal (T) symmetry vs. the combination RT that is a symmetry of any relativistic field theory. RT symmetry itself implies that to the extent that a relativistic quantum field theory exhibits random matrix statistics it should be of the GOE type for bosonic states and of the GSE type for fermionic states. We discuss related implications of these symmetries for wormholes.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  2. A<sc>bstract</sc>

    As shown by Louko and Sorkin in 1995, topology change in Lorentzian signature involves spacetimes with singular points, which they called crotches. We modify their construction to obtain Lorentzian semiclassical wormholes in asymptotically AdS. These solutions are obtained by inserting crotches on known saddles, like the double-cone or multiple copies of the Lorentzian black hole. The crotches implement swap-identifications, and are classically located near an extremal surface. The resulting Lorentzian wormholes have an instanton action equal to their area, which is responsible for topological suppression in any number of dimensions.

    We conjecture that including such Lorentzian wormhole spacetimes is equivalent to path integrating over all mostly Euclidean smooth spacetimes. We present evidence for this by reproducing semiclassical features of the genus expansion of the spectral form factor, and of a late-time two point function, by summing over the moduli space of Lorentzian wormholes. As a final piece of evidence, we discuss the Lorentzian version of West-Coast replica wormholes.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  3. A<sc>bstract</sc>

    We show that simultaneously explaining dark matter and the observed value of the muon’s magnetic dipole moment may lead to yet unexplored photon signals at the LHC. We consider the Minimal Supersymmetric Standard Model with electroweakino masses in the few-to-several hundred GeV range, and opposite sign of the Bino mass parameter with respect to both the Higgsino and Wino mass parameters. In such region of parameter space, the spin-independent elastic scattering cross section of a Bino-like dark matter candidate in direct detection experiment is suppressed by cancellations between different amplitudes, and the observed dark matter relic density can be realized via Bino-Wino co-annihilation. Moreover, the observed value of the muon’s magnetic dipole moment can be explained by Bino and Wino loop contributions. Interestingly, “radiative” decays of Wino-like neutralinos into the lightest neutralino and a photon are enhanced, whereas decays into leptons are suppressed. While these decay patterns weaken the reach of multi-lepton searches at the LHC, the radiative decay opens a new window for probing dark matter at the LHC through the exploration of parameter space regions beyond those currently accessible. To complement the current electroweakino searches, we propose searching for a single (soft) photon plus missing transverse energy, accompanied by a hard initial state radiation jet.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  4. A<sc>bstract</sc>

    In models with extra dimensions, matter particles can be easily localized to a ‘brane world’, but gravitational attraction tends to spread out in the extra dimensions unless they are small. Strong warping gradients can help localize gravity closer to the brane. In this note we give a mathematically rigorous proof that the internal wave-function of the massless graviton is constant as an eigenfunction of the weighted Laplacian, and hence is a power of the warping as a bound state in an analogue Schrödinger potential. This holds even in presence of singularities induced by thin branes.

    We also reassess the status of AdS vacuum solutions where the graviton is massive. We prove a bound on scale separation for such models, as an application of our recent results on KK masses. We also use them to estimate the scale at which gravity is localized, without having to compute the spectrum explicitly. For example, we point out that localization can be obtained at least up to the cosmological scale in string/M-theory solutions with infinite-volume Riemann surfaces; and in a known class of$$ \mathcal{N} $$N= 4 models, when the number of NS5- and D5-branes is roughly equal.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  5. Abstract

    We investigate the two-stage inflation regime in the theory of hybrid cosmological  α-attractors. The spectrum of inflationary perturbations is compatible with the latest Planck/BICEP/Keck Array results, thanks to the attractor properties of the model. However, at smaller scales, it may have a very high peak of controllable width and position, leading to a copious production of primordial black holes (PBH) and generation of a stochastic background of gravitational waves (SGWB).

     
    more » « less
  6. A<sc>bstract</sc>

    We studyd= 4,$$ \mathcal{N} $$N≥ 5 supergravities and their deformation via candidate counterterms, with the purpose to absorb UV divergences. We generalize the earlier studies of deformation and twisted self-duality constraint to the case with unbroken local$$ \mathcal{H} $$H-symmetry in presence of fermions. We find that the deformed action breaks nonlinear local supersymmetry. We show that all known cases of enhanced UV divergence cancellations are explained by nonlinear local supersymmetry.

    This result implies, in particular, that if$$ \mathcal{N} $$N= 5 supergravity at five loop will turn out to be UV divergent, the deformed theory will be BRST inconsistent. If it will be finite, it will be a consequence of nonlinear local supersymmetry and E7-type duality.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  7. Abstract

    We show that the large-scale perturbations in the dark matter generated by the freeze-in mechanism are only of adiabatic nature. The freeze-in mechanism is not at odds with the current stringent constraints on isocurvature perturbations.

     
    more » « less
  8. A<sc>bstract</sc>

    We study how entanglement spreads in the boundary duals of finite-cutoff three-dimensional theories with positive, negative and zero cosmological constant, the$$ T\overline{T} $$TT¯+ Λ2two-dimensional theories. We first study the Hawking-Page transition in all three cases, and find that there is a transition in all three scenarios at the temperature where the lengths of the two cycles of the torus are the same. We then study the entanglement entropy in the thermofield double states above the Hawking-Page transition, of regions symmetrically placed on the two boundaries. We consider the case where the region is one interval on each side, and the case where it is two intervals on each side. We give an entanglement tsunami interpretation of the time-evolution of the entanglement entropies.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  9. A<sc>bstract</sc>

    As has been known since the 90s, there is an integrable structure underlying two-dimensional gravity theories. Recently, two-dimensional gravity theories have regained an enormous amount of attention, but now in relation with quantum chaos — superficially nothing like integrability. In this paper, we return to the roots and exploit the integrable structure underlying dilaton gravity theories to study a late time, largeeSBHdouble scaled limit of the spectral form factor. In this limit, a novel cancellation due to the integrable structure ensures that at each genusgthe spectral form factor grows likeT2g+1, and that the sum over genera converges, realising a perturbative approach to the late-time plateau. Along the way, we clarify various aspects of this integrable structure. In particular, we explain the central role played by ribbon graphs, we discuss intersection theory, and we explain what the relations with dilaton gravity and matrix models are from a more modern holographic perspective.

     
    more » « less
  10. Abstract

    The era of Gravitational-Wave (GW) astronomy will grant the detection of the astrophysical GW background from unresolved mergers of binary black holes, and the prospect of probing the presence of primordial GW backgrounds. In particular, the low-frequency tail of the GW spectrum for causally-generated primordial signals (like a phase transition) offers an excellent opportunity to measure unambiguously cosmological parameters as the equation of state of the universe, or free-streaming particles at epochs well before recombination. We discuss whether this programme is jeopardised by the uncertainties on the astrophysical GW foregrounds that coexist with a primordial background. We detail the motivated assumptions under which the astrophysical foregrounds can be assumed to be known in shape, and only uncertain in their normalisation. In this case, the sensitivity to a primordial signal can be computed by a simple and numerically agile procedure, where the optimal filter function subtracts the components of the astrophysical foreground that are close in spectral shape to the signal. We show that the degradation of the sensitivity to the signal in presence of astrophysical foregrounds is limited to a factor of a few, and only around the frequencies where the signal is closer to the foregrounds. Our results highlight the importance of modelling the contributions of eccentric or intermediate-mass black hole binaries to the GW background, to consolidate the prospects to perform precision cosmology with primordial GW backgrounds.

     
    more » « less