skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Autonomous goal selection operation for agent based architectures
An intelligent agent has many tasks and goals to achieve over specific time intervals. The goals may be assigned to it or the agent may generate its own goals. In either case, the number of goals at any given time may exceed its capacity to act upon concurrently. Therefore, an agent must prioritize the goals in chronological order as per their relative importance or significance. We show how an intelligent agent can estimate the trade-off between performance gains and resource costs to make smart choices concerning the goals it intends to achieve as opposed to selecting them in an arbitrary basis. We illustrate this method within the context of an intelligent cognitive architecture that supports various agent models.  more » « less
Award ID(s):
1849131
PAR ID:
10352582
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 2021 World Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE'21)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Autonomous agents in a multi-agent system work with each other to achieve their goals. However, In a partially observable world, current multi-agent systems are often less effective in achieving their goals. This limitation is due to the agents’ lack of reasoning about other agents and their mental states. Another factor is the agents’ inability to share required knowledge with other agents. This paper addresses the limitations by presenting a general approach for autonomous agents to work together in a multi-agent system. In this approach, an agent applies two main concepts: goal reasoning- to determine what goals to pursue and share; Theory of mind-to select an agent(s) for sharing goals and knowledge. We evaluate the performance of our multi-agent system in a Marine Life Survey Domain and compare it to another multi-agent system that randomly selects agent(s) to delegates its goals. 
    more » « less
  2. This paper focuses on a dynamic aspect of responsible autonomy, namely, to make intelligent agents be responsible at run time. That is, it considers settings where decision making by agents impinges upon the outcomes perceived by other agents. For an agent to act responsibly, it must accommodate the desires and other attitudes of its users and, through other agents, of their users.The contribution of this paper is twofold. First, it provides a conceptual analysis of consent, its benefits and misuses, and how understanding consent can help achieve responsible autonomy. Second, it outlines challenges for AI (in particular, for agents and multiagent systems) that merit investigation to form as a basis for modeling consent in multiagent systems and applying consent to achieve responsible autonomy. 
    more » « less
  3. Barták, Roman; Bell, Eric (Ed.)
    Autonomous agents often have sufficient resources to achieve the goals that are provided to them. However, in dynamic worlds where unexpected problems are bound to occur, an agent may formulate new goals with further resource requirements. Thus, agents should be smart enough to man-age their goals and the limited resources they possess in an effective and flexible manner. We present an approach to the selection and monitoring of goals using resource estimation and goal priorities. To evaluate our approach, we designed an experiment on top of our previous work in a complex mine-clearance domain. The agent in this domain formulates its own goals by retrieving a case to explain uncovered discrepancies and generating goals from the explanation. Finally, we compare the performance of our approach to two alternatives. 
    more » « less
  4. A key challenge in intelligent robotics is creating robots that are capable of directly interacting with the world around them to achieve their goals. The last decade has seen substantial growth in research on the problem of robot manipulation, which aims to exploit the increasing availability of affordable robot arms and grippers to create robots capable of directly interacting with the world to achieve their goals. Learning will be central to such autonomous systems, as the real world contains too much variation for a robot to expect to have an accurate model of its environment, the objects in it, or the skills required to manipulate them, in advance. We aim to survey a representative subset of that research which uses machine learning for manipulation. We describe a formalization of the robot manipulation learning problem that synthesizes existing research into a single coherent framework and highlight the many remaining research opportunities and challenges. 
    more » « less
  5. Abstract We define Artificial Intelligence-Mediated Communication (AI-MC) as interpersonal communication in which an intelligent agent operates on behalf of a communicator by modifying, augmenting, or generating messages to accomplish communication goals. The recent advent of AI-MC raises new questions about how technology may shape human communication and requires re-evaluation – and potentially expansion – of many of Computer-Mediated Communication’s (CMC) key theories, frameworks, and findings. A research agenda around AI-MC should consider the design of these technologies and the psychological, linguistic, relational, policy and ethical implications of introducing AI into human–human communication. This article aims to articulate such an agenda. 
    more » « less