Nonlinear optical materials are essential for the development of both nonlinear and quantum optics and have advanced recently from bulk crystals to integrated material platforms. In this Perspective, we provide an overview of the emerging InGaP χ(2) nonlinear integrated photonics platform and its experimental achievements. With its exceptional χ(2) nonlinearity and low optical losses, the epitaxial InGaP platform significantly enhances a wide range of second-order nonlinear optical effects, from second-harmonic generation to entangled photon pair sources, achieving efficiencies several orders of magnitude beyond the current state of the art. Moreover, the InGaP platform enables quantum nonlinear optics at the few- and single-photon levels via passive nonlinearities, which has broad implications for quantum information processing and quantum networking. We also examine the current limitations of the InGaP platform and propose potential solutions to fully unlock its capabilities.
more »
« less
InGaP quantum nanophotonic integrated circuits with 1.5% nonlinearity-to-loss ratio
Optical nonlinearity plays a pivotal role in quantum information processing using photons, from heralded single-photon sources and coherent wavelength conversion to long-sought quantum repeaters. Despite the availability of strong dipole coupling to quantum emitters, achieving strong bulk optical nonlinearity is highly desirable. Here, we realize quantum nanophotonic integrated circuits in thin-film InGaP with, to our knowledge, a record-high ratio of 1.5 % between the single-photon nonlinear coupling rate ( g / 2 π = 11.2 M H z ) and cavity-photon loss rate. We demonstrate second-harmonic generation with an efficiency of 71200 ± 10300 % / W in the InGaP photonic circuit and photon-pair generation via degenerate spontaneous parametric downconversion with an ultrahigh rate exceeding 27.5 MHz/µW—an order of magnitude improvement of the state of the art—and a large coincidence-to-accidental ratio up to 1.4 × 10 4 . Our work shows InGaP as a potentially transcending platform for quantum nonlinear optics and quantum information applications.
more »
« less
- Award ID(s):
- 1839177
- PAR ID:
- 10352677
- Date Published:
- Journal Name:
- Optica
- Volume:
- 9
- Issue:
- 2
- ISSN:
- 2334-2536
- Page Range / eLocation ID:
- 258
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Nonlinear optics plays an important role in many areas of science and technology. The advance of nonlinear optics is empowered by the discovery and utilization of materials with growing optical nonlinearity. Here we demonstrate an indium gallium phosphide (InGaP) integrated photonics platform for broadband, ultra-efficient second-order nonlinear optics. The InGaP nanophotonic waveguide enables second-harmonic generation with a normalized efficiency of 128, 000%/W/cm2at 1.55μm pump wavelength, nearly two orders of magnitude higher than the state of the art in the telecommunication C band. Further, we realize an ultra-bright, broadband time-energy entangled photon source with a pair generation rate of 97 GHz/mW and a bandwidth of 115 nm centered at the telecommunication C band. The InGaP entangled photon source shows high coincidence-to-accidental counts ratio CAR > 104and two-photon interference visibility > 98%. The InGaP second-order nonlinear photonics platform will have wide-ranging implications for non-classical light generation, optical signal processing, and quantum networking.more » « less
-
The development of manufacturable and scalable integrated nonlinear photonic materials is driving key technologies in diverse areas, such as high-speed communications, signal processing, sensing, and quantum information. Here, we demonstrate a nonlinear platform—InGaP-on-insulator—optimized for visible-to-telecommunication wavelength χ(2) nonlinear optical processes. In this work, we detail our 100 mm wafer-scale InGaP-on-insulator fabrication process realized via wafer bonding, optical lithography, and dry-etching techniques. The resulting wafers yield 1000 s of components in each fabrication cycle, with initial designs that include chip-to-fiber couplers, 12.5-cm-long nested spiral waveguides, and arrays of microring resonators with free-spectral ranges spanning 400–900 GHz. We demonstrate intrinsic resonator quality factors as high as 324 000 (440 000) for single-resonance (split-resonance) modes near 1550 nm corresponding to 1.56 dB/cm (1.22 dB/cm) propagation loss. We analyze the loss vs waveguide width and resonator radius to establish the operating regime for optimal 775–1550 nm phase matching. By combining the high χ(2) and χ(3) optical nonlinearity of InGaP with wafer-scale fabrication and low propagation loss, these results open promising possibilities for entangled-photon, multi-photon, and squeezed light generation.more » « less
-
The realization of deterministic photon–photon gates is a central goal in optical quantum computation and engineering. A longstanding challenge is that optical nonlinearities in scalable, room-temperature material platforms are too weak to achieve the required strong coupling, due to the critical loss-confinement trade-off in existing photonic structures. In this work, we introduce a spatio-temporal confinement method, dispersion-engineered temporal trapping, to circumvent the trade-off, enabling a route to all-optical strong coupling. Temporal confinement is imposed by an auxiliary trap pulse via cross-phase modulation, which, combined with the spatial confinement of a waveguide, creates a “flying cavity” that enhances the nonlinear interaction strength by at least an order of magnitude. Numerical simulations confirm that temporal trapping confines the multimode nonlinear dynamics to a single-mode subspace, enabling high-fidelity deterministic quantum gate operations. With realistic dispersion engineering and loss figures, we show that temporally trapped ultrashort pulses could achieve strong coupling on near-term nonlinear nanophotonic platforms. Our results highlight the potential of ultrafast nonlinear optics to become the first scalable, high-bandwidth, and room-temperature platform that achieves strong coupling, opening a path to quantum computing, simulation, and light sources.more » « less
-
null (Ed.)Realizing nonlinear interactions between spatially separated particles can advance molecular science and technology, including remote catalysis of chemical reactions, ultrafast processing of information in infrared (IR) photonic circuitry, and advanced platforms for quantum simulations with increased complexity. Here, we achieved nonlinear interactions at ultrafast time scale between polaritons contained in spatially adjacent cavities in the mid-IR regime, altering polaritons in one cavity by pumping polaritons in an adjacent one. This was done by strong coupling molecular vibrational modes with photon modes, a process that combines characteristics of both photon delocalization and molecular nonlinearity. The dual photon/molecule character of polaritons enables delocalized nonlinearity—a property that neither molecular nor cavity mode would have alone.more » « less
An official website of the United States government

