skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multimodal Data Visualization and Denoising with Integrated Diffusion
We propose a method called integrated diffusion for combining multimodal data, gathered via different sensors on the same system, to create a integrated data diffusion operator. As real world data suffers from both local and global noise, we introduce mechanisms to optimally calculate a diffusion operator that reflects the combined information in data by maintaining low frequency eigenvectors of each modality both globally and locally. We show the utility of this integrated operator in denoising and visualizing multimodal toy data as well as multi-omic data generated from blood cells, measuring both gene expression and chromatin accessibility. Our approach better visualizes the geometry of the integrated data and captures known cross-modality associations. More generally, integrated diffusion is broadly applicable to multimodal datasets generated by noisy sensors collected in a variety of fields.  more » « less
Award ID(s):
2047856
PAR ID:
10352692
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Machine Learning for Signal Processing
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In multimodal machine learning, effectively addressing the missing modality scenario is crucial for improving performance in downstream tasks such as in medical contexts where data may be incomplete. Although some attempts have been made to retrieve embeddings for missing modalities, two main bottlenecks remain: (1) the need to consider both intra- and inter-modal context, and (2) the cost of embedding selection, where embeddings often lack modality-specific knowledge. To address this, the authors propose MoE-Retriever, a novel framework inspired by Sparse Mixture of Experts (SMoE). MoE-Retriever defines a supporting group for intra-modal inputs—samples that commonly lack the target modality—by selecting samples with complementary modality combinations for the target modality. This group is integrated with inter-modal inputs from different modalities of the same sample, establishing both intra- and inter-modal contexts. These inputs are processed by Multi-Head Attention to generate context-aware embeddings, which serve as inputs to the SMoE Router that automatically selects the most relevant experts (embedding candidates). Comprehensive experiments on both medical and general multimodal datasets demonstrate the robustness and generalizability of MoE-Retriever, marking a significant step forward in embedding retrieval methods for incomplete multimodal data. 
    more » « less
  2. In multimodal machine learning, effectively addressing the missing modality scenario is crucial for improving performance in downstream tasks such as in medical contexts where data may be incomplete. Although some attempts have been made to effectively retrieve embeddings for missing modalities, two main bottlenecks remain: the consideration of both intra- and inter-modal context, and the cost of embedding selection, where embeddings often lack modality-specific knowledge. In response, we propose MoE-Retriever, a novel framework inspired by the design principles of Sparse Mixture of Experts (SMoE). First, MoE-Retriever samples the relevant data from modality combinations, using a so-called supporting group to construct intra-modal inputs while incorporating inter-modal inputs. These inputs are then processed by Multi-Head Attention, after which the SMoE Router automatically selects the most relevant expert, i.e., the embedding candidate to be retrieved. Comprehensive experiments on both medical and general multimodal datasets demonstrate the robustness and generalizability of MoE-Retriever, marking a significant step forward in embedding retrieval methods for incomplete multimodal data. 
    more » « less
  3. In this paper, we present ViTag to associate user identities across multimodal data, particularly those obtained from cameras and smartphones. ViTag associates a sequence of vision tracker generated bounding boxes with Inertial Measurement Unit (IMU) data and Wi-Fi Fine Time Measurements (FTM) from smartphones. We formulate the problem as association by sequence to sequence (seq2seq) translation. In this two-step process, our system first performs cross-modal translation using a multimodal LSTM encoder-decoder network (X-Translator) that translates one modality to another, e.g. reconstructing IMU and FTM readings purely from camera bounding boxes. Second, an association module finds identity matches between camera and phone domains, where the translated modality is then matched with the observed data from the same modality. In contrast to existing works, our proposed approach can associate identities in multi-person scenarios where all users may be performing the same activity. Extensive experiments in real-world indoor and outdoor environments demonstrate that online association on camera and phone data (IMU and FTM) achieves an average Identity Precision Accuracy (IDP) of 88.39% on a 1 to 3 seconds window, outperforming the state-of-the-art Vi-Fi (82.93%). Further study on modalities within the phone domain shows the FTM can improve association performance by 12.56% on average. Finally, results from our sensitivity experiments demonstrate the robustness of ViTag under different noise and environment variations. 
    more » « less
  4. Our study is motivated by robotics, where when dealing with robots or other physical systems, we often need to balance competing concerns of relying on complex, multimodal data coming from a variety of sensors with a general lack of large representative datasets. Despite the complexity of modern robotic platforms and the need for multimodal interaction, there has been little research on integrating more than two modalities in a low data regime with the real-world constraint that sensors fail due to obstructions or adverse conditions. In this work, we consider a case in which natural language is used as a retrieval query against objects, represented across multiple modalities, in a physical environment. We introduce extended multimodal alignment (EMMA), a method that learns to select the appropriate object while jointly refining modality-specific embeddings through a geometric (distance-based) loss. In contrast to prior work, our approach is able to incorporate an arbitrary number of views (modalities) of a particular piece of data. We demonstrate the efficacy of our model on a grounded language object retrieval scenario. We show that our model outperforms state-of-the-art baselines when little training data is available. Our code is available at https://github.com/kasraprime/EMMA 
    more » « less
  5. Learning multimodal representations is a fundamentally complex research problem due to the presence of multiple heterogeneous sources of information. Although the presence of multiple modalities provides additional valuable information, there are two key challenges to address when learning from multimodal data: 1) models must learn the complex intra-modal and cross-modal interactions for prediction and 2) models must be robust to unexpected missing or noisy modalities during testing. In this paper, we propose to optimize for a joint generative-discriminative objective across multimodal data and labels. We introduce a model that factorizes representations into two sets of independent factors: multimodal discriminative and modality-specific generative factors. Multimodal discriminative factors are shared across all modalities and contain joint multimodal features required for discriminative tasks such as sentiment prediction. Modality-specific generative factors are unique for each modality and contain the information required for generating data. Experimental results show that our model is able to learn meaningful multimodal representations that achieve state-of-the-art or competitive performance on six multimodal datasets. Our model demonstrates flexible generative capabilities by conditioning on independent factors and can reconstruct missing modalities without significantly impacting performance. Lastly, we interpret our factorized representations to understand the interactions that influence multimodal learning. 
    more » « less