skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Formation of organic color centers in air-suspended carbon nanotubes using vapor-phase reaction
Abstract Organic color centers in single-walled carbon nanotubes have demonstrated exceptional ability to generate single photons at room temperature in the telecom range. Combining the color centers with pristine air-suspended nanotubes would be desirable for improved performance, but all current synthetic methods occur in solution which makes them incompatible. Here we demonstrate the formation of color centers in air-suspended nanotubes using a vapor-phase reaction. Functionalization is directly verified by photoluminescence spectroscopy, with unambiguous statistics from more than a few thousand individual nanotubes. The color centers show strong diameter-dependent emission, which can be explained with a model for chemical reactivity considering strain along the tube curvature. We also estimate the defect density by comparing the experiments with simulations based on a one-dimensional exciton diffusion equation. Our results highlight the influence of the nanotube structure on vapor-phase reactivity and emission properties, providing guidelines for the development of high-performance near-infrared quantum light sources.  more » « less
Award ID(s):
1839165
PAR ID:
10352759
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We use time-dependent density functional theory to investigate the possibility of hosting organic color centers in (6, 6) armchair single-walled carbon nanotubes, which are known to be metallic. Our calculations show that in short segments of (6, 6) nanotubes ∼ 5 nm in length there is a dipole-allowed singlet transition related to the quantum confinement of charge carriers in the smaller segments. The introduction of s p 3 defects to the surface of (6, 6) nanotubes results in new dipole-allowed excited states. Some of these states are redshifted from the native confinement state of the defect-free (6, 6) segments; this is similar behavior to what is observed with s p 3 defects to exciton transitions in semiconducting carbon nanotubes. This result suggests the possibility of electrically wiring organic color centers directly through armchair carbon nanotube hosts. 
    more » « less
  2. Abstract Diamond color centers have been widely studied in the field of quantum optics. The negatively charged silicon vacancy (SiV − ) center exhibits a narrow emission linewidth at the wavelength of 738 nm, a high Debye–Waller factor, and unique spin properties, making it a promising emitter for quantum information technologies, biological imaging, and sensing. In particular, nanodiamond (ND)-based SiV − centers can be heterogeneously integrated with plasmonic and photonic nanostructures and serve as in vivo biomarkers and intracellular thermometers. Out of all methods to produce NDs with SiV − centers, ion implantation offers the unique potential to create controllable numbers of color centers in preselected individual NDs. However, the formation of single color centers in NDs with this technique has not been realized. We report the creation of single SiV − centers featuring stable high-purity single-photon emission through Si implantation into NDs with an average size of ∼20 nm. We observe room temperature emission, with zero-phonon line wavelengths in the range of 730–800 nm and linewidths below 10 nm. Our results offer new opportunities for the controlled production of group-IV diamond color centers with applications in quantum photonics, sensing, and biomedicine. 
    more » « less
  3. Abstract In this work, we compare the CO oxidation performance of Pt single atom catalysts (SACs) prepared via two methods: (1) conventional wet chemical synthesis (strong electrostatic adsorption–SEA) with calcination at 350 °C in air; and (2) high temperature vapor phase synthesis (atom trapping–AT) with calcination in air at 800 °C leading to ionic Pt being trapped on the CeO 2 in a thermally stable form. As-synthesized, both SACs are inactive for low temperature (<150 °C) CO oxidation. After treatment in CO at 275 °C, both catalysts show enhanced reactivity. Despite similar Pt metal particle size, the AT catalyst is significantly more active, with onset of CO oxidation near room temperature. A combination of near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) and CO temperature-programmed reduction (CO-TPR) shows that the high reactivity at low temperatures can be related to the improved reducibility of lattice oxygen on the CeO 2 support. 
    more » « less
  4. Organic color centers (OCCs), generated by the covalent functionalization of single-walled carbon nanotubes, have been exploited for chemical sensing, bioimaging, and quantum technologies. However, monovalent OCCs can assume at least 6 different bonding configurations on the sp2 carbon lattice of a chiral nanotube, resulting in heterogeneous OCC photoluminescence emissions. Herein, we show that a heat-activated [2 + 2] cycloaddition reaction enables the synthesis of divalent OCCs with a reduced number of atomic bonding configurations. The chemistry occurs by simply mixing enophile molecules (e.g., methylmaleimide, maleic anhydride, and 4-cyclopentene-1,3-dione) with an ethylene glycol suspension of SWCNTs at elevated temperature (70–140 °C). Unlike monovalent OCC chemistries, we observe just three OCC emission peaks that can be assigned to the three possible bonding configurations of the divalent OCCs based on density functional theory calculations. Notably, these OCC photoluminescence peaks can be controlled by temperature to decrease the emission heterogeneity even further. This divalent chemistry provides a scalable way to synthesize OCCs with tightly controlled emissions for emerging applications. 
    more » « less
  5. Atomic defect color centers in solid-state systems hold immense potential to advance various quantum technologies. However, the fabrication of high-quality, densely packed defects presents a significant challenge. Herein we introduce a DNA-programmable photochemical approach for creating organic color-center quantum defects on semiconducting single-walled carbon nanotubes (SWCNTs). Key to this precision defect chemistry is the strategic substitution of thymine with halogenated uracil in DNA strands that are orderly wrapped around the nanotube. Photochemical activation of the reactive uracil initiates the formation of sp3 defects along the nanotube as deep exciton traps, with a pronounced photoluminescence shift from the nanotube band gap emission (by 191 meV for (6,5)-SWCNTs). Furthermore, by altering the DNA spacers, we achieve systematic control over the defect placements along the nanotube. This method, bridging advanced molecular chemistry with quantum materials science, marks a crucial step in crafting quantum defects for critical applications in quantum information science, imaging, and sensing. 
    more » « less