skip to main content


Search for: All records

Award ID contains: 1839165

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Polydimethylsiloxane (PDMS)—the simplest and most common silicone compound—exemplifies the central characteristics of its class and has attracted tremendous research attention. The development of PDMS‐based materials is a vivid reflection of the modern industry. In recent years, PDMS has stood out as the material of choice for various emerging technologies. The rapid improvement in bulk modification strategies and multifunctional surfaces has enabled a whole new generation of PDMS‐based materials and devices, facilitating, and even transforming enormous applications, including flexible electronics, superwetting surfaces, soft actuators, wearable and implantable sensors, biomedicals, and autonomous robotics. This paper reviews the latest advances in the field of PDMS‐based functional materials, with a focus on the added functionality and their use as programmable materials for smart devices. Recent breakthroughs regarding instant crosslinking and additive manufacturing are featured, and exciting opportunities for future research are highlighted. This review provides a quick entrance to this rapidly evolving field and will help guide the rational design of next‐generation soft materials and devices.

     
    more » « less
  2. Abstract Organic color centers in single-walled carbon nanotubes have demonstrated exceptional ability to generate single photons at room temperature in the telecom range. Combining the color centers with pristine air-suspended nanotubes would be desirable for improved performance, but all current synthetic methods occur in solution which makes them incompatible. Here we demonstrate the formation of color centers in air-suspended nanotubes using a vapor-phase reaction. Functionalization is directly verified by photoluminescence spectroscopy, with unambiguous statistics from more than a few thousand individual nanotubes. The color centers show strong diameter-dependent emission, which can be explained with a model for chemical reactivity considering strain along the tube curvature. We also estimate the defect density by comparing the experiments with simulations based on a one-dimensional exciton diffusion equation. Our results highlight the influence of the nanotube structure on vapor-phase reactivity and emission properties, providing guidelines for the development of high-performance near-infrared quantum light sources. 
    more » « less
  3. Abstract We use time-dependent density functional theory to investigate the possibility of hosting organic color centers in (6, 6) armchair single-walled carbon nanotubes, which are known to be metallic. Our calculations show that in short segments of (6, 6) nanotubes ∼ 5 nm in length there is a dipole-allowed singlet transition related to the quantum confinement of charge carriers in the smaller segments. The introduction of s p 3 defects to the surface of (6, 6) nanotubes results in new dipole-allowed excited states. Some of these states are redshifted from the native confinement state of the defect-free (6, 6) segments; this is similar behavior to what is observed with s p 3 defects to exciton transitions in semiconducting carbon nanotubes. This result suggests the possibility of electrically wiring organic color centers directly through armchair carbon nanotube hosts. 
    more » « less