skip to main content


Title: Numerical estrangement and integration between symbolic and non-symbolic numerical information: Task-dependence and its link to math abilities in adults
Award ID(s):
1734735
NSF-PAR ID:
10352768
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Cognition
Volume:
224
Issue:
C
ISSN:
0010-0277
Page Range / eLocation ID:
105067
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Park and Brannon (2013, https://doi.org/10.1177/0956797613482944) found that practicing non-symbolic approximate arithmetic increased performance on an objective numeracy task, specifically symbolic arithmetic. Manipulating objective numeracy would be useful for many researchers, particularly those who wish to investigate causal effects of objective numeracy on performance. Objective numeracy has been linked to performance in multiple areas, such as judgment-and-decision-making (JDM) competence, but most existing studies are correlational. Here, we expanded upon Park and Brannon’s method to experimentally manipulate objective numeracy and we investigated whether numeracy’s link with JDM performance was causal. Experimental participants drawn from a diverse internet sample trained on approximate-arithmetic tasks whereas active control participants trained on a spatial working-memory task. Numeracy training followed a 2 × 2 design: Experimental participants quickly estimated the sum of OR difference between presented numeric stimuli, using symbolic numbers (i.e., Arabic numbers) OR non-symbolic numeric stimuli (i.e., dot arrays). We partially replicated Park and Brannon’s findings: The numeracy training improved objective-numeracy performance more than control training, but this improvement was evidenced by performance on the Objective Numeracy Scale, not the symbolic arithmetic task. Subsequently, we found that experimental participants also perceived risks more consistently than active control participants, and this risk-consistency benefit was mediated by objective numeracy. These results provide the first known experimental evidence of a causal link between objective numeracy and the consistency of risk judgments. 
    more » « less
  2. Abstract

    Mathematical knowledge is constructed hierarchically from basic understanding of quantities and the symbols that denote them. Discrimination of numerical quantity in both symbolic and non‐symbolic formats has been linked to mathematical problem‐solving abilities. However, little is known of the extent to which overlap in quantity representations between symbolic and non‐symbolic formats is related to individual differences in numerical problem solving and whether this relation changes with different stages of development and skill acquisition. Here we investigate the association between neural representational similarity (NRS) across symbolic and non‐symbolic quantity discrimination and arithmetic problem‐solving skills in early and late developmental stages: elementary school children (ages 7–10 years) and adolescents and young adults (AYA, ages 14–21 years). In children, cross‐format NRS in distributed brain regions, including parietal and frontal cortices and the hippocampus, was positively correlated with arithmetic skills. In contrast, no brain region showed a significant association between cross‐format NRS and arithmetic skills in the AYA group. Our findings suggest that the relationship between symbolic‐non‐symbolic NRS and arithmetic skills depends on developmental stage. Taken together, our study provides evidence for both mapping and estrangement hypotheses in the context of numerical problem solving, albeit over different cognitive developmental stages.

     
    more » « less