skip to main content


Title: Investigating factors related to ethical expectations and motivations among Chinese engineering students
Research in engineering ethics has examined the effects of education on the ethical knowledge and reasoning of students from mostly WEIRD (Western educated industrialized rich democratic) cultures. However, it is unclear that findings from WEIRD samples are transferable across cultures. China now graduates and employs more STEM (science technology engineering mathematics) majors than any other country, although little work has examined the ethical perspectives and education of these students. Therefore, a study was conducted exploring the kinds of ethical issues Chinese engineering students expect to encounter (expectations), the importance they attach to being ethical (motivations), and their relations to various curricular and extra-curricular factors, including sources of ethical influence, nature and extent of ethics education, and perceived usefulness of ethics education. 163 Chinese engineering majors from two Chinese-foreign educational institutes in Shanghai, China completed a survey. Results indicate participants were most likely to expect to face ethical issues related to fairness, and that the perceived usefulness of ethics education was predictive of both ethical expectations and motivations, followed by encountering instructors who cared about ethics. The extent of ethics education was related to ethical expectations but not motivations. The implications of these findings and directions for future work are discussed.  more » « less
Award ID(s):
2124984
NSF-PAR ID:
10352818
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
European Journal of Engineering Education
ISSN:
0304-3797
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the engineering ethics education literature, there has recently been an increasing interest in longitudinal studies of engineering students’ moral development. Understanding how first-year engineering students perceive ethics can provide baseline information critical for understanding their moral development during their subsequent journey in engineering learning. Existing studies have mainly examined how first-year engineering students perceived the structure and elements of ethics curricula, personal ethical beliefs, pregiven ethics scenarios, institutional ethical climates, and particular political ideals (e.g., fairness and political involvement). Complementary to the existing studies, our project surveyed how first-year engineering students perceived public welfare beliefs, examples of (un-)ethical behaviors in engineering, and professional ethical values. Specifically, we adopted part of the well-known instrument developed by Erin Cech to assess how students perceived public welfare beliefs. An important goal of replicating Cech’s work is to examine whether students from a different cohort (i.e., 18 years after the cohort in Cech’s study, and from a more specialized institution than those in Cech’s study) hold different public welfare beliefs. We invite engineering educators to carefully examine how temporality might matter when considering the connections between previously conducted studies with their own ongoing projects. Our survey also asked students to provide an example of unethical behavior in engineering and possible ethical problems they anticipate in their future careers. Finally, we asked students to list three most important values for defining a good engineer. Such a question on professional ethical values responds to a gap in the engineering ethics literature, namely, that engineering students’ perceptions of professional virtues and values are not sufficiently addressed (especially among first-year students). This paper is part of a larger project that compares how students develop moral reasoning and intuition longitudinally across three cultures/countries: the United States, Netherlands, and China. We hope that findings in this paper can be useful for engineering educators to reflect on and design subsequent ethics education programs that are more responsive to students’ backgrounds and needs when they start their first year in engineering programs. 
    more » « less
  2. Ethics has long been recognized as crucial to responsible engineering, but the increasingly globalized environments present challenges to effective engineering ethics training. This paper is part of a larger research project that aims to examine the effects of culture and education on ethics training in undergraduate engineering students at universities in the United States, China, and the Netherlands. We are interested in how students’ curricular and extra-curricular (e.g., internships, service projects) experiences and training impact their ethical reasoning and moral dispositions, and how this differs cross-culturally. To understand this, we are conducting mixed methods research longitudinally over four years to engineering students at our participating universities to gauge their moral dispositions and ethical reasoning skills and to measure any change in these. This work-in-progress paper, however, is not about the direct outcomes of this research project. Rather, it critically examines our own practices and methods in doing this research. We begin the paper by briefly introducing the larger research project and motivating the use of comparative, multi-institutional case studies as necessary for contextualizing, complementing, and interpreting quantitative data on ethical reasoning and moral dispositions. Because the conditions related to engineering ethics education differ widely per participating institution for institutional (and also likely cultural) reasons, interpreting and analyzing quantitative survey data will require understanding contextual conditions of education at each institution. Comparative case studies can supply missing contextual information to provide a more complete picture of the engineering ethics educational contexts, strategies, and practices at each of the participating universities. However, in considering how to design and conduct these case studies, we realized we were operating under certain assumptions such as ethics in engineering as separate (and separable from) the “real,” or technical engineering curriculum. These assumptions have been widely problematized in engineering ethics education (Cech, 2014; Tormey et al. 2015; Polmear et al. 2019); they are assumptions that we in our teaching and research attempt to dispel. Our paper considers (and invites discussion on) the broader implications of methodological design in conducting cross-cultural multi-sited case studies in engineering ethics education research. It explores models for designing and conducting our case studies so as not to reproduce pernicious ideas about social and ethical issues in engineering as subsidiary “interventions” in the “actual,” (i.e., technical) curriculum. More generally we discuss how engineering ethics education research methods can be harnessed to overcome this established division. 
    more » « less
  3. This paper describes a project to develop, deliver, and assess a short-term (one-week) course on global engineering ethics at Shandong University, Shandong, China in the summer of 2022. This project builds on previous work regarding the development and assessment of global engineering ethics, shortening the time required to deliver and assess a course. The goal was to explore whether a shorter version of the course resulted in gains similar to the longer version, and whether shorter versions of the assessment instruments could track these gains. Ethics is increasingly recognized as central to engineering, although disagreement exists concerning how it should be carried out and assessed. These disagreements are compounded by the global nature of engineering, where technologies span multiple countries, and peoples from different cultures work together as never before. Separation in time and space between those developing technologies and those affected by these technologies can increase difficulties associated with identifying and mitigating the negative effects of technology on human life. Additionally, regulatory and cultural differences can lead to disagreement regarding how technologies should or should not be developed and used. For these reasons, efforts have been made to develop global engineering ethics education. Over several years, members of the team have developed and delivered a semester-long, two-credit hour course in global engineering ethics, finding that participants scored significantly higher in measures of ethical reasoning post- than pre-course, and developed a greater concern with fairness and loyalty. Given the limited time and space in engineering curricula, and limited number of qualified faculty to teach global engineering ethics, this project sought to determine whether a course with reduced contents delivered over a shorter period of time would be similarly effective. Additionally, it sought to determine whether shorter versions of the instruments used to assess this education, the ESIT (Engineering and Science Issues Test) and MFQ (Moral Foundations Theory), would be as effective as their original, longer versions. This was motivated by the fact that, in ongoing research, the project team was having difficulty collecting adequate sample sizes, in part because it was taking so long to complete full versions of the ESIT and MFQ. To do so, in July of 2022, Chinese students enrolled in “Global Engineering Ethics” completed shortened versions of the ESIT and MFQ on the first and last days of the course. Our presentation will describe the nature of the course, as well as pre- and post-course results on shortened versions of the ESIT and MFQ. 
    more » « less
  4. null (Ed.)
    As our nation’s need for engineering professionals grows, a sharp rise in P-12 engineering education programs and related research has taken place (Brophy, Klein, Portsmore, & Rogers, 2008; Purzer, Strobel, & Cardella, 2014). The associated research has focused primarily on students’ perceptions and motivations, teachers’ beliefs and knowledge, and curricula and program success. The existing research has expanded our understanding of new K-12 engineering curriculum development and teacher professional development efforts, but empirical data remain scarce on how racial and ethnic diversity of student population influences teaching methods, course content, and overall teachers’ experiences. In particular, Hynes et al. (2017) note in their systematic review of P-12 research that little attention has been paid to teachers’ experiences with respect to racially and ethnically diverse engineering classrooms. The growing attention and resources being committed to diversity and inclusion issues (Lichtenstein, Chen, Smith, & Maldonado, 2014; McKenna, Dalal, Anderson, & Ta, 2018; NRC, 2009) underscore the importance of understanding teachers’ experiences with complementary research-based recommendations for how to implement engineering curricula in racially diverse schools to engage all students. Our work examines the experiences of three high school teachers as they teach an introductory engineering course in geographically and distinctly different racially diverse schools across the nation. The study is situated in the context of a new high school level engineering education initiative called Engineering for Us All (E4USA). The National Science Foundation (NSF) funded initiative was launched in 2018 as a partnership among five universities across the nation to ‘demystify’ engineering for high school students and teachers. The program aims to create an all-inclusive high school level engineering course(s), a professional development platform, and a learning community to support student pathways to higher education institutions. An introductory engineering course was developed and professional development was provided to nine high school teachers to instruct and assess engineering learning during the first year of the project. This study investigates participating teachers’ implementation of the course in high schools across the nation to understand the extent to which their experiences vary as a function of student demographic (race, ethnicity, socioeconomic status) and resource level of the school itself. Analysis of these experiences was undertaken using a collective case-study approach (Creswell, 2013) involving in-depth analysis of a limited number of cases “to focus on fewer "subjects," but more "variables" within each subject” (Campbell & Ahrens, 1998, p. 541). This study will document distinct experiences of high school teachers as they teach the E4USA curriculum. Participants were purposively sampled for the cases in order to gather an information-rich data set (Creswell, 2013). The study focuses on three of the nine teachers participating in the first cohort to implement the E4USA curriculum. Teachers were purposefully selected because of the demographic makeup of their students. The participating teachers teach in Arizona, Maryland and Tennessee with predominantly Hispanic, African-American, and Caucasian student bodies, respectively. To better understand similarities and differences among teaching experiences of these teachers, a rich data set is collected consisting of: 1) semi-structured interviews with teachers at multiple stages during the academic year, 2) reflective journal entries shared by the teachers, and 3) multiple observations of classrooms. The interview data will be analyzed with an inductive approach outlined by Miles, Huberman, and Saldaña (2014). All teachers’ interview transcripts will be coded together to identify common themes across participants. Participants’ reflections will be analyzed similarly, seeking to characterize their experiences. Observation notes will be used to triangulate the findings. Descriptions for each case will be written emphasizing the aspects that relate to the identified themes. Finally, we will look for commonalities and differences across cases. The results section will describe the cases at the individual participant level followed by a cross-case analysis. This study takes into consideration how high school teachers’ experiences could be an important tool to gain insight into engineering education problems at the P-12 level. Each case will provide insights into how student body diversity impacts teachers’ pedagogy and experiences. The cases illustrate “multiple truths” (Arghode, 2012) with regard to high school level engineering teaching and embody diversity from the perspective of high school teachers. We will highlight themes across cases in the context of frameworks that represent teacher experience conceptualizing race, ethnicity, and diversity of students. We will also present salient features from each case that connect to potential recommendations for advancing P-12 engineering education efforts. These findings will impact how diversity support is practiced at the high school level and will demonstrate specific novel curricular and pedagogical approaches in engineering education to advance P-12 mentoring efforts. 
    more » « less
  5. When examining factors affecting student academic success, it is important to consider how these factors interact with one another. Students’ affective attributes are complex in nature; thus, research methods and analyses should holistically examine how these attributes interact, not simply as a set of distinct constructs. Prior research into engineering students’ affective attributes, in which we used a validated survey to assess student motivation, identity, goal orientation, sense of belonging, career outcome expectations, grit and personality traits, demonstrated a positive correlation between perceptions of belongingness in engineering and time spent in the program. Other prior research has examined interactions between affective attributes, for example, engineering identity as a predictor of grit (consistency of interest). However, more work is needed to examine the complex relationships between sense of belonging, engineering identity, future career outcome expectations and motivation, particularly for students in an engineering program undergoing curricular change. This paper describes a confirmatory factor analysis and structural equation model to examine how engineering identity, career outcome expectations and time-oriented motivation (specifically, students’ future time perspectives, or FTP) impact their sense of belonging in engineering, with grit (consistency of interest) as a moderator of these relationships. To conduct these analyses, we used survey data collected over two years from sophomores, juniors, and seniors enrolled in an undergraduate civil engineering program (2017-18, n=358; 2018-19, n=556). Based on descriptive statistics and initial statistical comparisons, we confirmed our prior findings that students’ sense of belonging at the course level increased with time in the program (from sophomore to senior year), and that engineering identity increased with time in the program as well. In addition, we observed that seniors had higher perceived instrumentality, a sub-construct of FTP indicating their perceived usefulness of their courses in reaching their future goals, than sophomores and juniors. We found that course belongingness and FTP have the strongest influence on belongingness compared to other affective attributes we assessed. When identity and motivation were factored in, career outcome expectations were not influential to engineering belongingness. Finally, we found that time-oriented motivation (FTP) was also a mediator of this relationship through its influence on grit (consistency of interest). 
    more » « less