Candecomp / PARAFAC (CP) decomposition, a generalization of the matrix singular value decomposition to higher-dimensional tensors, is a popular tool for analyzing multidimensional sparse data. On tensors with billions of nonzero entries, computing a CP decomposition is a computationally intensive task. We propose the first distributed-memory implementations of two randomized CP decomposition algorithms,CP-ARLS-LEV and STS-CP, that offer nearly an order-of-magnitude speedup at high decomposition ranks over well-tuned non-randomized decomposition packages. Both algorithms rely on leverage score sampling and enjoy strong theoretical guarantees, each with varying time and accuracy tradeoffs. We tailor the communication schedule for our random sampling algorithms, eliminating expensive reduction collectives and forcing communication costs to scale with the random sample count. Finally, we optimize the local storage format for our methods, switching between analogues of compressed sparse column and compressed sparse row formats. Experiments show that our methods are fast and scalable,producing 11x speedup over SPLATT by decomposing the billion-scale Reddit tensor on 512 CPU cores in under two minutes.
more »
« less
Error Analysis of Tensor-Train Cross Approximation
Tensor train decomposition is widely used in machine learning and quantum physics due to its concise representation of high-dimensional tensors, overcoming the curse of dimensionality. Cross approximation-originally developed for representing a matrix from a set of selected rows and columns-is an efficient method for constructing a tensor train decomposition of a tensor from few of its entries. While tensor train cross approximation has achieved remarkable performance in practical applications, its theoretical analysis, in particular regarding the error of the approximation, is so far lacking. To our knowledge, existing results only provide element-wise approximation accuracy guarantees, which lead to a very loose bound when extended to the entire tensor. In this paper, we bridge this gap by providing accuracy guarantees in terms of the entire tensor for both exact and noisy measurements. Our results illustrate how the choice of selected subtensors affects the quality of the cross approximation and that the approximation error caused by model error and/or measurement error may not grow exponentially with the order of the tensor. These results are verified by numerical experiments, and may have important implications for the usefulness of cross approximations for high-order tensors, such as those encountered in the description of quantum many-body states.
more »
« less
- PAR ID:
- 10352916
- Date Published:
- Journal Name:
- ArXivorg
- ISSN:
- 2331-8422
- Page Range / eLocation ID:
- 2207.04327
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
With the advent of machine learning and its overarching pervasiveness it is imperative to devise ways to represent large datasets efficiently while distilling intrinsic features necessary for subsequent analysis. The primary workhorse used in data dimensionality reduction and feature extraction has been the matrix singular value decomposition (SVD), which presupposes that data have been arranged in matrix format. A primary goal in this study is to show that high-dimensional datasets are more compressible when treated as tensors (i.e., multiway arrays) and compressed via tensor-SVDs under the tensor-tensor product constructs and its generalizations. We begin by proving Eckart–Young optimality results for families of tensor-SVDs under two different truncation strategies. Since such optimality properties can be proven in both matrix and tensor-based algebras, a fundamental question arises: Does the tensor construct subsume the matrix construct in terms of representation efficiency? The answer is positive, as proven by showing that a tensor-tensor representation of an equal dimensional spanning space can be superior to its matrix counterpart. We then use these optimality results to investigate how the compressed representation provided by the truncated tensor SVD is related both theoretically and empirically to its two closest tensor-based analogs, the truncated high-order SVD and the truncated tensor-train SVD.more » « less
-
null (Ed.)Cluster analysis is a fundamental tool for pattern discovery of complex heterogeneous data. Prevalent clustering methods mainly focus on vector or matrix-variate data and are not applicable to general-order tensors, which arise frequently in modern scientific and business applications. Moreover, there is a gap between statistical guarantees and computational efficiency for existing tensor clustering solutions due to the nature of their non-convex formulations. In this work, we bridge this gap by developing a provable convex formulation of tensor co-clustering. Our convex co-clustering (CoCo) estimator enjoys stability guarantees and its computational and storage costs are polynomial in the size of the data. We further establish a non-asymptotic error bound for the CoCo estimator, which reveals a surprising ``blessing of dimensionality" phenomenon that does not exist in vector or matrix-variate cluster analysis. Our theoretical findings are supported by extensive simulated studies. Finally, we apply the CoCo estimator to the cluster analysis of advertisement click tensor data from a major online company. Our clustering results provide meaningful business insights to improve advertising effectiveness.more » « less
-
Abstract In this paper we consider the problem of recovering a low-rank Tucker approximation to a massive tensor based solely on structured random compressive measurements (i.e., a sketch). Crucially, the proposed random measurement ensembles are both designed to be compactly represented (i.e., low-memory), and can also be efficiently computed in one-pass over the tensor. Thus, the proposed compressive sensing approach may be used to produce a low-rank factorization of a huge tensor that is too large to store in memory with a total memory footprint on the order of the much smaller desired low-rank factorization. In addition, the compressive sensing recovery algorithm itself (which takes the compressive measurements as input, and then outputs a low-rank factorization) also runs in a time which principally depends only on the size of the sought factorization, making its runtime sub-linear in the size of the large tensor one is approximating. Finally, unlike prior works related to (streaming) algorithms for low-rank tensor approximation from such compressive measurements, we present a unified analysis of both Kronecker and Khatri-Rao structured measurement ensembles culminating in error guarantees comparing the error of our recovery algorithm’s approximation of the input tensor to the best possible low-rank Tucker approximation error achievable for the tensor by any possible algorithm. We further include an empirical study of the proposed approach that verifies our theoretical findings and explores various trade-offs of parameters of interest.more » « less
-
null (Ed.)Abstract Higher-order tensors can represent scores in a rating system, frames in a video, and images of the same subject. In practice, the measurements are often highly quantized due to the sampling strategies or the quality of devices. Existing works on tensor recovery have focused on data losses and random noises. Only a few works consider tensor recovery from quantized measurements but are restricted to binary measurements. This paper, for the first time, addresses the problem of tensor recovery from multi-level quantized measurements by leveraging the low CANDECOMP/PARAFAC (CP) rank property. We study the recovery of both general low-rank tensors and tensors that have tensor singular value decomposition (TSVD) by solving nonconvex optimization problems. We provide the theoretical upper bounds of the recovery error, which diminish to zero when the sizes of dimensions increase to infinity. We further characterize the fundamental limit of any recovery algorithm and show that our recovery error is nearly order-wise optimal. A tensor-based alternating proximal gradient descent algorithm with a convergence guarantee and a TSVD-based projected gradient descent algorithm are proposed to solve the nonconvex problems. Our recovery methods can also handle data losses and do not necessarily need the information of the quantization rule. The methods are validated on synthetic data, image datasets, and music recommender datasets.more » « less
An official website of the United States government

