skip to main content


Title: Development of the Chemistry Mindset Instrument (CheMI) for use with introductory undergraduate chemistry students
Chemistry education research has increasingly considered the role of affect when investigating chemistry learning environments over the past decade. Despite its popularity in educational spheres, mindset has been understudied from a chemistry-specific perspective. Mindset encompasses one's beliefs about the ability to change intelligence with effort and has been shown to be a domain-specific construct. For this reason, students’ mindset would be most relevant in chemistry if it were measured as a chemistry-specific construct. To date, no instrument has been developed for use in chemistry learning contexts. Here we present evidence supporting the development process and final product of a mindset instrument designed specifically for undergraduate chemistry students. The Chemistry Mindset Instrument (CheMI) was developed through an iterative design process requiring multiple implementations and revisions. We analyze the psychometric properties of CheMI data from a sample of introductory (general and organic) chemistry students enrolled in lecture courses. We achieved good data-model fit via confirmatory factor analysis and high reliability for the newly developed items, indicating that the instrument functions well with the target population. Significant correlations were observed for chemistry mindset with students’ self-efficacy, mastery goals, and course performance, providing external validity evidence for the construct measurement.  more » « less
Award ID(s):
2111182
NSF-PAR ID:
10352948
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Chemistry Education Research and Practice
Volume:
23
Issue:
3
ISSN:
1109-4028
Page Range / eLocation ID:
742 to 757
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Emerging technology combining spectroscopy with microscopy is advancing the analysis of trace evidence with the potential to revolutionize forensic microscopy and excite a new generation of forensic microscopists. In this laboratory experiment, developed for undergraduate forensic chemistry and instrumental analysis courses, students use Fourier transform infrared (micro)spectroscopy (µ-FTIR) to analyze mock forensic samples commonly encountered at crime scenes, including latent fingerprints (laced with ibuprofen to mimic an illicit drug), vehicle paint chips, and acrylic fibers. Unlike light microscopy, µ-FTIR provides information on the spatial distribution and chemical nature of the sample. Learning objectives were to reinforce key concepts covered in the classroom, including collection and preparation of trace evidence, forensic microscopy, and vibrational spectroscopy, as well as to provide students hands-on experience using a state-of-the-art instrument. Students prepared the fingerprint and fiber samples for analysis, whereas the paint chip was previously cross-sectioned to save time. The students collected and processed their own data, including generating chemical distribution maps. Student responses to the exercise were positive and reports written by the students demonstrated an increased awareness of the capabilities of FTIR microscopy and chemical imaging. Overall, the exercise helped remove the “black box” mentality, where students analyze samples without understanding the fundamentals of the technique, which is so important to recognize poor data quality and troubleshoot instruments. This report describes the laboratory exercise and student experience, and includes data and chemical images collected by students, and aspects of the experiment that could be modified to improve learning outcomes. 
    more » « less
  2. High levels of stress and anxiety are common amongst college students, particularly engineering students. Students report lack of sleep, grades, competition, change in lifestyle, and other significant stressors throughout their undergraduate education (1, 2). Stress and anxiety have been shown to negatively impact student experience (3-6), academic performance (6-8), and retention (9). Previous studies have focused on identifying factors that cause individual students stress while completing undergraduate engineering degree programs (1). However, it not well-understood how a culture of stress is perceived and is propagated in engineering programs or how this culture impacts student levels of identification with engineering. Further, the impact of student stress has not been directly considered in engineering regarding recruitment, retention, and success. Therefore, our guiding research question is: Does the engineering culture create stress for students that hinder their engineering identity development? To answer our research question, we designed a sequential mixed methods study with equal priority of quantitative survey data and qualitative individual interviews. Our study participants are undergraduate engineering students across all levels and majors at a large, public university. Our sample goal is 2000 engineering student respondents. We combined three published surveys to build our quantitative data collection instrument, including the Depression Anxiety Stress Scales (DASS), Identification with engineering subscale, and Engineering Department Inclusion Level subscale. The objective of the quantitative instrument is to illuminate individual perceptions of the existence of an engineering stress culture (ESC) and create an efficient tool to measure the impact ESC on engineering identity development. Specifically, we seek to understand the relationships among the following constructs; 1) identification with engineering, 2) stress and anxiety, and 3) feelings of inclusion within their department. The focus of this paper presents the results of the pilot of the proposed instrument with 20 participants and a detailed data collection and analysis process. In an effort to validate our instrument, we conducted a pilot study to refine our data collection process and the results will guide the data collection for the larger study. In addition to identifying relationships among construct, the survey data will be further analyzed to specify which demographics are mediating or moderating factors of these relationships. For example, does a student’s 1st generation status influence their perception of stress or engineering identity development? Our analysis may identify discipline-specific stressors and characterize culture components that promote student anxiety and stress. Our objective is to validate our survey instrument and use it to inform the protocol for the follow-up interviews to gain a deeper understanding of the responses to the survey instrument. Understanding what students view as stressful and how students identify stress as an element of program culture will support the development of interventions to mitigate student stress. References 1. Schneider L (2007) Perceived stress among engineering students. A Paper Presented at St. Lawrence Section Conference. Toronto, Canada. Retrieved from: www. asee. morrisville. edu. 2. Ross SE, Niebling BC, & Heckert TM (1999) Sources of stress among college students. Social psychology 61(5):841-846. 3. Goldman CS & Wong EH (1997) Stress and the college student. Education 117(4):604-611. 4. Hudd SS, et al. (2000) Stress at college: Effects on health habits, health status and self-esteem. College Student Journal 34(2):217-228. 5. Macgeorge EL, Samter W, & Gillihan SJ (2005) Academic Stress, Supportive Communication, and Health A version of this paper was presented at the 2005 International Communication Association convention in New York City. Communication Education 54(4):365-372. 6. Burt KB & Paysnick AA (2014) Identity, stress, and behavioral and emotional problems in undergraduates: Evidence for interaction effects. Journal of college student development 55(4):368-384. 7. Felsten G & Wilcox K (1992) Influences of stress and situation-specific mastery beliefs and satisfaction with social support on well-being and academic performance. Psychological Reports 70(1):291-303. 8. Pritchard ME & Wilson GS (2003) Using emotional and social factors to predict student success. Journal of college student development 44(1):18-28. 9. Zhang Z & RiCharde RS (1998) Prediction and Analysis of Freshman Retention. AIR 1998 Annual Forum Paper. 
    more » « less
  3. null (Ed.)
    The purpose of this study is to re-examine the validity evidence of the engineering design self-efficacy (EDSE) scale scores by Carberry et al. (2010) within the context of secondary education. Self-efficacy refers to individuals’ belief in their capabilities to perform a domain-specific task. In engineering education, significant efforts have been made to understand the role of self-efficacy for students considering its positive impact on student outcomes such as performance and persistence. These studies have investigated and developed measures for different domains of engineering self-efficacy (e.g., general academic, domain-general, and task-specific self-efficacy). The EDSE scale is a frequently cited measure that examines task-specific self-efficacy within the domain of engineering design. The original scale contains nine items that are intended to represent the engineering design process. Initial score validity evidence was collected using a sample consisting of 202 respondents with varying degrees of engineering experience including undergraduate/graduate students and faculty members. This scale has been primarily used by researchers and practitioners with engineering undergraduate students to assess changes in their engineering design self-efficacy as a result of active learning interventions, such as project-based learning. Our work has begun to experiment using the scale in a secondary education context in conjunction with an increased introduction to engineering in K-12 education. Yet, there still is a need to examine score validity and reliability of this scale in non-undergraduate populations such as secondary school student populations. This study fills this important gap by testing construct validity of the original nine items of the EDSE scale, supporting proper use of the scale for researchers and practitioners. This study was conducted as part of a larger, e4usa project investigating the development and implementation of a yearlong project-based engineering design course for secondary school students. Evidence of construct validity and reliability was collected using a multi-step process. First, a survey that includes the EDSE scale was administered to the project participating students at nine associated secondary schools across the US at the beginning of Spring 2020. Analysis of collected data is in progress and includes Exploratory Factor Analysis (EFA) on the 137 responses. The evidence of score reliability will be obtained by computing the internal consistency of each resulting factor. The resulting factor structure and items will be analyzed by comparing it with the original EDSE scale. The full paper will provide details about the psychometric evaluation of the EDSE scale. The findings from this paper will provide insights on the future usage of the EDSE scale in the context of secondary engineering education. 
    more » « less
  4. Abstract

    Developing and using scientific models is an important scientific practice for science students. Undergraduate chemistry curricula are often centered on established disciplinary models, and assessments typically provide students with opportunities to use these models to predict and explain chemical phenomena. However, traditional curricula generally provide few opportunities for students to consider the epistemic nature of models and the process of modeling. To gain a sense of how introductory chemistry students understand model changeability, model multiplicity, the evaluation of models, and the process of modeling, we use a construct‐mapping approach to characterize the sophistication of students' epistemic knowledge of models and modeling. We present a set of four related construct maps that we developed based on the work of other scholars and empirically validated in an undergraduate introductory chemistry setting. We use the construct maps to identify themes in students' responses to an open‐ended survey instrument, the models in chemistry survey, and discuss the implications for teaching.

     
    more » « less
  5. The association between student motivation and learning, and changes in motivation across a course, were evaluated for students enrolled in one-semester foundation-level inorganic chemistry courses at multiple postsecondary institutions across the United States. The Academic Motivation Scale for Chemistry (AMS-Chemistry) and the Foundations of Inorganic Chemistry American Chemical Society Exam (i.e., a content knowledge measure) were used in this study. Evidence of validity, reliability, and longitudinal measurement invariance for data obtained from the AMS-Chemistry instrument with this population were found using methodologies appropriate for ordinal, non-parametric data. Positive and significant associations between intrinsic motivation measures and academic performance corroborate theoretical and empirical investigations; however, a lack of pre/post changes in motivation suggest that motivation may be less malleable in courses primarily populated by chemistry majors. Implications for inorganic chemistry instructors include paths for incorporating engaging pedagogies known to promote intrinsic motivation and methods for incorporating affect measures into assessment practices. Implications for researchers include a need for more work that disaggregates chemistry majors when evaluating relationships between affect and learning, and when making pre/post comparisons. Additionally, this work provides an example of how to implement more appropriate methods for treating data in studies using Likert-type responses and nested data.

     
    more » « less