Mindset is a construct of interest for challenging learning environments, as science courses often are, in that, it has implications for behavioral responses to academic challenges. Previous work examining mindset in science learning contexts has been primarily quantitative in nature, limiting the theoretical basis for mindset perspectives specific to science domains. A few studies in physics education research have revealed domain-specific complexities applying to the mindset construct that suggest a need to explore undergraduate perspectives on mindset within each science domain. Here we present a multiple case study examining chemistry-specific mindset beliefs of students enrolled in general and organic chemistry lecture courses. A between-case analysis is used to describe six unique perspectives on chemistry mindset beliefs. This analysis revealed that students’ beliefs about their own ability to improve in chemistry intelligence or regarding chemistry-specific cognitive abilities did not consistently match their views on the potential for change for other students in chemistry. The nature of the abilities themselves (whether they were naturally occurring or developed with effort), and the presence of a natural inclination toward chemistry learning were observed to play a role in students’ perspectives. The findings from this analysis are used to propose a more complex model for chemistry-specific mindset beliefs to inform future work.
more »
« less
Development of the Chemistry Mindset Instrument (CheMI) for use with introductory undergraduate chemistry students
Chemistry education research has increasingly considered the role of affect when investigating chemistry learning environments over the past decade. Despite its popularity in educational spheres, mindset has been understudied from a chemistry-specific perspective. Mindset encompasses one's beliefs about the ability to change intelligence with effort and has been shown to be a domain-specific construct. For this reason, students’ mindset would be most relevant in chemistry if it were measured as a chemistry-specific construct. To date, no instrument has been developed for use in chemistry learning contexts. Here we present evidence supporting the development process and final product of a mindset instrument designed specifically for undergraduate chemistry students. The Chemistry Mindset Instrument (CheMI) was developed through an iterative design process requiring multiple implementations and revisions. We analyze the psychometric properties of CheMI data from a sample of introductory (general and organic) chemistry students enrolled in lecture courses. We achieved good data-model fit via confirmatory factor analysis and high reliability for the newly developed items, indicating that the instrument functions well with the target population. Significant correlations were observed for chemistry mindset with students’ self-efficacy, mastery goals, and course performance, providing external validity evidence for the construct measurement.
more »
« less
- Award ID(s):
- 2111182
- PAR ID:
- 10352948
- Date Published:
- Journal Name:
- Chemistry Education Research and Practice
- Volume:
- 23
- Issue:
- 3
- ISSN:
- 1109-4028
- Page Range / eLocation ID:
- 742 to 757
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Developing and using scientific models is an important scientific practice for science students. Undergraduate chemistry curricula are often centered on established disciplinary models, and assessments typically provide students with opportunities to use these models to predict and explain chemical phenomena. However, traditional curricula generally provide few opportunities for students to consider the epistemic nature of models and the process of modeling. To gain a sense of how introductory chemistry students understand model changeability, model multiplicity, the evaluation of models, and the process of modeling, we use a construct‐mapping approach to characterize the sophistication of students' epistemic knowledge of models and modeling. We present a set of four related construct maps that we developed based on the work of other scholars and empirically validated in an undergraduate introductory chemistry setting. We use the construct maps to identify themes in students' responses to an open‐ended survey instrument, the models in chemistry survey, and discuss the implications for teaching.more » « less
-
Students’ view of intelligence (i.e., their mindset beliefs) has been found to be related to their self-efficacy and goal orientations as well as to influence their course outcomes. Comparisons of students’ chemistry mindset between different groups found that organic chemistry I students held more of a growth mindset than general chemistry I students at the beginning of a term. Additionally, men tended to hold more growth mindset beliefs than women. Given these differences, structural equation modeling was used to explore the relations between students’ mindset, self-efficacy, and goal orientations, along with their relation to achievement outcomes within a course. An indirect effect of mindset on summative achievement was found to be mediated through performance-avoidance goals, whereas the relation between self-efficacy and summative achievement was mediated through performance-approach, mastery-avoidance, and performance-avoidance goal orientations. While mindset was not found to be directly or indirectly related to formative achievement outcomes, self-efficacy was found to have an indirect effect on formative achievement through mastery-approach and mastery-avoidance goal orientations. Additionally, an interaction between mindset and self-efficacy was found to be related to performance-avoidance goals, as has been suggested in prior studies. These results point to the importance of mindset on achievement outcomes while also considering influences from self-efficacy and goal orientations. Future work is encouraged to investigate how these variables are related when they are measured throughout a term.more » « less
-
Abstract The transformative learning scale for the innovation mindset (TLSIM) is an instrument that effectively assesses both process-related experiences and outcome-oriented shifts in students’ self-awareness, open-mindedness, and innovation capabilities resulting from participation in innovation competitions and programs (ICPs), namely, experiential learning opportunities. It was developed using transformative learning theory (TLT) and the Kern Entrepreneurial Engineering Network’s (KEEN) 3Cs framework (Curiosity, Connections, and Creating Value). The study involved developing scale items, validating content and face validity through expert reviews and student focus groups, as well as conducting psychometric analysis using confirmatory factor analysis (CFA) on data collected from 291 STEM students (70.2% from engineering) who participated in ICPs. The CFA results showed strong factor loadings across most constructs, with Root Mean Square Error of Approximation (RMSEA) values within acceptable limits, confirming the robustness of the TLSIM for measuring both process-oriented (RMSEA = 0.047, CFI = 0.929) and outcome-oriented constructs (RMSEA = 0.052, CFI = 0.901) in the development of an innovation mindset. The analysis showed that TLSIM is a reliable and valid instrument with strong psychometric properties for measuring key constructs related to the innovation mindset. TLSIM can capture significant changes in students’ beliefs, attitudes, and self-perceptions regarding innovation. Future research should refine TLSIM across various disciplines.more » « less
-
The association between student motivation and learning, and changes in motivation across a course, were evaluated for students enrolled in one-semester foundation-level inorganic chemistry courses at multiple postsecondary institutions across the United States. The Academic Motivation Scale for Chemistry (AMS-Chemistry) and the Foundations of Inorganic Chemistry American Chemical Society Exam (i.e., a content knowledge measure) were used in this study. Evidence of validity, reliability, and longitudinal measurement invariance for data obtained from the AMS-Chemistry instrument with this population were found using methodologies appropriate for ordinal, non-parametric data. Positive and significant associations between intrinsic motivation measures and academic performance corroborate theoretical and empirical investigations; however, a lack of pre/post changes in motivation suggest that motivation may be less malleable in courses primarily populated by chemistry majors. Implications for inorganic chemistry instructors include paths for incorporating engaging pedagogies known to promote intrinsic motivation and methods for incorporating affect measures into assessment practices. Implications for researchers include a need for more work that disaggregates chemistry majors when evaluating relationships between affect and learning, and when making pre/post comparisons. Additionally, this work provides an example of how to implement more appropriate methods for treating data in studies using Likert-type responses and nested data.more » « less
An official website of the United States government

