skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mapping undergraduate chemistry students' epistemic ideas about models and modeling
Abstract Developing and using scientific models is an important scientific practice for science students. Undergraduate chemistry curricula are often centered on established disciplinary models, and assessments typically provide students with opportunities to use these models to predict and explain chemical phenomena. However, traditional curricula generally provide few opportunities for students to consider the epistemic nature of models and the process of modeling. To gain a sense of how introductory chemistry students understand model changeability, model multiplicity, the evaluation of models, and the process of modeling, we use a construct‐mapping approach to characterize the sophistication of students' epistemic knowledge of models and modeling. We present a set of four related construct maps that we developed based on the work of other scholars and empirically validated in an undergraduate introductory chemistry setting. We use the construct maps to identify themes in students' responses to an open‐ended survey instrument, the models in chemistry survey, and discuss the implications for teaching.  more » « less
Award ID(s):
1611622
PAR ID:
10373629
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Research in Science Teaching
Volume:
57
Issue:
5
ISSN:
0022-4308
Page Range / eLocation ID:
p. 794-824
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Thinking about knowledge and knowing (i.e., epistemic cognition) is an important part of student learning and has implications for how they apply their knowledge in future courses, careers, and other aspects of their lives. Three classes of models have emerged from research on epistemic cognition: developmental models, dimensional models, and resources models. These models can be distinguished by how value is assigned to particular epistemic ideas (hierarchy), how consistent epistemic ideas are across time and/or context (stability), and the degree to which people are consciously aware of their own epistemic ideas (explicitness). To determine the extent to which these models inform research on epistemic cognition in chemistry education specifically, we reviewed 54 articles on undergraduate chemistry students’ epistemologies. First, we sought to describe the articles in terms of the courses and unit of study sampled, the methods and study designs implemented, and the means of data collection utilized. We found that most studies focused on the epistemic cognition of individual students enrolled in introductory chemistry courses. The majority were qualitative and employed exploratory or quasi-experimental designs, but a variety of data collection methods were represented. We then coded each article for how it treated epistemic cognition in terms of hierarchy, stability, and explicitness. The overwhelming majority of articles performed a hierarchical analysis of students’ epistemic ideas. An equal number of articles treated epistemic cognition as stableversusunstable across time and/or context. Likewise, about half of the studies asked students directly about their epistemic cognition while approximately half of the studies inferred it from students’ responses, course observations, or written artifacts. These codes were then used to infer the models of epistemic cognition underlying these studies. Eighteen studies were mostly consistent with a developmental or dimensional model, ten were mostly aligned with a resources model, and twenty-six did not provide enough information to reasonably infer a model. We advocate for considering how models of epistemic cognition—and their assumptions about hierarchy, stability, and explicitness—influence the design of studies on students’ epistemic cognition and the conclusions that can be reasonably drawn from them. 
    more » « less
  2. Abstract Reformed science curricula provide opportunities for students to engage with authentic science practices. However, teacher implementation of such curricula requires teachers to consider their role in the classroom, including realigning instructional decisions with the epistemic aims of science. Guiding newcomers in science can take place in settings ranging from the classroom to the undergraduate research laboratory. We suggest thinking about the potential intersections of guiding students across these contexts is important. We describe the Classroom‐Research‐Mentoring (CRM) Framework as a novel lens for examining science practice‐based instruction. We present a comparative case study of two teachers as they instruct undergraduate students in a model‐based inquiry laboratory. We analyzed stimulated‐recall episodes uncovering how these teachers interacted with their students and the rationale behind their instructional choices. Through the application of the CRM Framework, we revealed ways teachers can have instructional goals that align with those of a research mentor. For example, our teachers had the goals of “creating an inclusive environment open to student ideas,” “acknowledging students as scientists,” and “focusing students on skills and ideas needed to solve biological problems.” We suggest three functions of research mentoring that translate across the classroom and research laboratory settings: (1) build a shared understanding of epistemic aims, (2) support learners in the productive use of science practices, and (3) motivate learner engagement in science practices. 
    more » « less
  3. null (Ed.)
    Here we evaluate undergraduate student attitudes about science after each of three authentic research experiences in a semester of an introductory biology laboratory course at Utah State University. The three course-based research experiences (CUREs) vary in length and student freedom, and they cover different areas of biology. Students responded to the science attitude items of the CURE Survey. When compared to national data, our students faired similarly, and all students struggled with certain epistemic assumptions about science knowledge. As also seen in the national database, change in science attitude was slight and nonlinear. Student self confidence in what a career scientist is and in scientific process skills was the best predictor of scientific maturity, not the three CUREs or other aspects of students’ background. We discuss the slight positive and negative change in attitude we did influence, and we note that most students would choose to have another research experience. 
    more » « less
  4. Abstract Course‐based undergraduate research experiences (CUREs) provide students with valuable opportunities to engage in research in a classroom setting, expanding access to research opportunities for undergraduates, fostering inclusive research and learning environments, and bridging the gap between the research and education communities. While scientific practices, integral to the scientific discovery process, have been widely implemented in CUREs, there have been relatively few reports emphasizing the incorporation of core biology concepts into CURE curricula. In this study, we present a CURE that integrates core biology concepts, including genetic information flow, phenotype–genotype relationships, mutations and mutants, and structure–function relationships, within the context of mutant screening and gene loci identification. The design of this laboratory course aligns with key CURE criteria, as demonstrated by data collected through the laboratory course assessment survey (LCAS). The survey of undergraduate research experiences (SURE) demonstrates students' learning gains in both course‐directed skills and transferrable skills following their participation in the CURE. Additionally, concept survey data reflect students' self‐perceived understanding of the aforementioned core biological concepts. Given that genetic mutant screens are central to the study of gene function in biology, we anticipate that this CURE holds potential value for educators and researchers who are interested in designing and implementing a mutant screen CURE in their classrooms. This can be accomplished through independent research or by establishing partnerships between different units or institutions. 
    more » « less
  5. Chemistry education research has increasingly considered the role of affect when investigating chemistry learning environments over the past decade. Despite its popularity in educational spheres, mindset has been understudied from a chemistry-specific perspective. Mindset encompasses one's beliefs about the ability to change intelligence with effort and has been shown to be a domain-specific construct. For this reason, students’ mindset would be most relevant in chemistry if it were measured as a chemistry-specific construct. To date, no instrument has been developed for use in chemistry learning contexts. Here we present evidence supporting the development process and final product of a mindset instrument designed specifically for undergraduate chemistry students. The Chemistry Mindset Instrument (CheMI) was developed through an iterative design process requiring multiple implementations and revisions. We analyze the psychometric properties of CheMI data from a sample of introductory (general and organic) chemistry students enrolled in lecture courses. We achieved good data-model fit via confirmatory factor analysis and high reliability for the newly developed items, indicating that the instrument functions well with the target population. Significant correlations were observed for chemistry mindset with students’ self-efficacy, mastery goals, and course performance, providing external validity evidence for the construct measurement. 
    more » « less