skip to main content


Title: The role of high-density and low-density amorphous ice on biomolecules at cryogenic temperatures: a case study with polyalanine
Experimental techniques, such as cryo-electron microscopy, require biological samples to be recovered at cryogenic temperatures ( T ≈ 100 K) with water being in an amorphous ice state. However, (bulk) water can exist in two amorphous ices at P < 1 GPa, low-density amorphous (LDA) ice at low pressures and high-density amorphous ice (HDA) at high pressures; HDA is ≈20–25% denser than LDA. While fast/plunge cooling at 1 bar brings the sample into LDA, high-pressure cooling (HPC), at sufficiently high pressure, produces HDA. HDA can also be produced by isothermal compression of LDA at cryogenic temperatures. Here, we perform classical molecular dynamics simulations to study the effects of LDA, HDA, and the LDA–HDA transformation on the structure and hydration of a small peptide, polyalanine. We follow thermodynamic paths corresponding to (i) fast/plunge cooling at 1 bar, (ii) HPC at P = 400 MPa, and (iii) compression/decompression cycles at T = 80 K. While process (i) produced LDA in the system, path (iii) produces HDA. Interestingly, the amorphous ice produced in process (ii) is an intermediate amorphous ice (IA) with properties that fall in-between those of LDA and HDA. Remarkably, the structural changes in polyalanine are negligible at all conditions studied (0–2000 MPa, 80–300 K) even when water changes among the low and high-density liquid states as well as the amorphous solids LDA, IA, and HDA. The similarities and differences in the hydration of polyalanine vitrified in LDA, IA, and HDA are described. Since the studied thermodynamic paths are suitable for the cryopreservation of biomolecules, we also study the structure and hydration of polyalanine along isobaric and isochoric heating paths, which can be followed experimentally for the recovery of cryopreserved samples. Upon heating, the structure of polyalanine remains practically unchanged. We conclude with a brief discussion of the practical advantages of (a) using HDA and IA as a cryoprotectant environment (as opposed to LDA), and (b) the use of isochoric heating as a recovery process (as opposed to isobaric heating).  more » « less
Award ID(s):
2112550
NSF-PAR ID:
10352950
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
23
Issue:
35
ISSN:
1463-9076
Page Range / eLocation ID:
19402 to 19414
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We perform path integral molecular dynamics (PIMD) simulations of a monatomic liquid that exhibits a liquid–liquid phase transition and liquid–liquid critical point. PIMD simulations are performed using different values of Planck’s constant h, allowing us to study the behavior of the liquid as nuclear quantum effects (NQE, i.e., atoms delocalization) are introduced, from the classical liquid ( h = 0) to increasingly quantum liquids ( h > 0). By combining the PIMD simulations with the ring-polymer molecular dynamics method, we also explore the dynamics of the classical and quantum liquids. We find that (i) the glass transition temperature of the low-density liquid (LDL) is anomalous, i.e., [Formula: see text] decreases upon compression. Instead, (ii) the glass transition temperature of the high-density liquid (HDL) is normal, i.e., [Formula: see text] increases upon compression. (iii) NQE shift both [Formula: see text] and [Formula: see text] toward lower temperatures, but NQE are more pronounced on HDL. We also study the glass behavior of the ring-polymer systems associated with the quantum liquids studied (via the path-integral formulation of statistical mechanics). There are two glass states in all the systems studied, low-density amorphous ice (LDA) and high-density amorphous ice (HDA), which are the glass counterparts of LDL and HDL. In all cases, the pressure-induced LDA–HDA transformation is sharp, reminiscent of a first-order phase transition. In the low-quantum regime, the LDA–HDA transformation is reversible, with identical LDA forms before compression and after decompression. However, in the high-quantum regime, the atoms become more delocalized in the final LDA than in the initial LDA, raising questions on the reversibility of the LDA–HDA transformation. 
    more » « less
  2. Abstract

    We perform path-integral molecular dynamics (PIMD), ring-polymer MD (RPMD), and classical MD simulations of H$$_2$$2O and D$$_2$$2O using the q-TIP4P/F water model over a wide range of temperatures and pressures. The density$$\rho (T)$$ρ(T), isothermal compressibility$$\kappa _T(T)$$κT(T), and self-diffusion coefficientsD(T) of H$$_2$$2O and D$$_2$$2O are in excellent agreement with available experimental data; the isobaric heat capacity$$C_P(T)$$CP(T)obtained from PIMD and MD simulations agree qualitatively well with the experiments. Some of these thermodynamic properties exhibit anomalous maxima upon isobaric cooling, consistent with recent experiments and with the possibility that H$$_2$$2O and D$$_2$$2O exhibit a liquid-liquid critical point (LLCP) at low temperatures and positive pressures. The data from PIMD/MD for H$$_2$$2O and D$$_2$$2O can be fitted remarkably well using the Two-State-Equation-of-State (TSEOS). Using the TSEOS, we estimate that the LLCP for q-TIP4P/F H$$_2$$2O, from PIMD simulations, is located at$$P_c = 167 \pm 9$$Pc=167±9 MPa,$$T_c = 159 \pm 6$$Tc=159±6 K, and$$\rho _c = 1.02 \pm 0.01$$ρc=1.02±0.01 g/cm$$^3$$3. Isotope substitution effects are important; the LLCP location in q-TIP4P/F D$$_2$$2O is estimated to be$$P_c = 176 \pm 4$$Pc=176±4 MPa,$$T_c = 177 \pm 2$$Tc=177±2 K, and$$\rho _c = 1.13 \pm 0.01$$ρc=1.13±0.01 g/cm$$^3$$3. Interestingly, for the water model studied, differences in the LLCP location from PIMD and MD simulations suggest that nuclear quantum effects (i.e., atoms delocalization) play an important role in the thermodynamics of water around the LLCP (from the MD simulations of q-TIP4P/F water,$$P_c = 203 \pm 4$$Pc=203±4 MPa,$$T_c = 175 \pm 2$$Tc=175±2 K, and$$\rho _c = 1.03 \pm 0.01$$ρc=1.03±0.01 g/cm$$^3$$3). Overall, our results strongly support the LLPT scenario to explain water anomalous behavior, independently of the fundamental differences between classical MD and PIMD techniques. The reported values of$$T_c$$Tcfor D$$_2$$2O and, particularly, H$$_2$$2O suggest that improved water models are needed for the study of supercooled water.

     
    more » « less
  3. Abstract Recent experiments continue to find evidence for a liquid-liquid phase transition (LLPT) in supercooled water, which would unify our understanding of the anomalous properties of liquid water and amorphous ice. These experiments are challenging because the proposed LLPT occurs under extreme metastable conditions where the liquid freezes to a crystal on a very short time scale. Here, we analyze models for the LLPT to show that coexistence of distinct high-density and low-density liquid phases may be observed by subjecting low-density amorphous (LDA) ice to ultrafast heating. We then describe experiments in which we heat LDA ice to near the predicted critical point of the LLPT by an ultrafast infrared laser pulse, following which we measure the structure factor using femtosecond x-ray laser pulses. Consistent with our predictions, we observe a LLPT occurring on a time scale < 100 ns and widely separated from ice formation, which begins at times >1 μs. 
    more » « less
  4. ABSTRACT Heating of virialized gas by streaming cosmic rays (CRs) may be energetically important in galaxy haloes, groups, and clusters. We present a linear thermal stability analysis of plasmas heated by streaming CRs. We separately treat equilibria with and without background gradients, and with and without gravity. We include both CR streaming and diffusion along the magnetic-field direction. Thermal stability depends strongly on the ratio of CR pressure to gas pressure, which determines whether modes are isobaric or isochoric. Modes with $\boldsymbol {k \cdot B }\ne 0$ are strongly affected by CR diffusion. When the streaming time is shorter than the CR diffusion time, thermally unstable modes (with $\boldsymbol {k \cdot B }\ne 0$) are waves propagating at a speed ∝ the Alfvén speed. Halo gas in photoionization equilibrium is thermally stable independent of CR pressure, while gas in collisional ionization equilibrium is unstable for physically realistic parameters. In gravitationally stratified plasmas, the oscillation frequency of thermally overstable modes can be higher in the presence of CR streaming than the buoyancy/free-fall frequency. This may modify the critical tcool/tff at which multiphase gas is present. The criterion for convective instability of a stratified, CR-heated medium can be written in the familiar Schwarzschild form dseff/dz < 0, where seff is an effective entropy involving the gas and CR pressures. We discuss the implications of our results for the thermal evolution and multiphase structure of galaxy haloes, groups, and clusters. 
    more » « less
  5. The thermal contraction of aqueous cryoprotectant solutions on cooling to cryogenic temperatures is of practical importance in protein cryocrystallography and in biological cryopreservation. In the former case, differential contraction on cooling of protein molecules and their lattice relative to that of the internal and surrounding solvent may lead to crystal damage and the degradation of crystal diffraction properties. Here, the amorphous phase densities of aqueous solutions of glycerol and ethylene glycol at T = 77 K have been determined. Densities with accuracies of <0.5% to concentrations as low as 30%( w / v ) were determined by rapidly cooling drops with volumes as small as 70 pl, assessing their optical clarity and measuring their buoyancy in liquid nitrogen–argon solutions. The use of these densities in contraction matching of internal solvent to the available solvent spaces is complicated by several factors, most notably the exclusion of cryoprotectants from protein hydration shells and the expected deviation of the contraction behavior of hydration water from bulk water. The present methods and results will assist in developing rational approaches to cryoprotection and an understanding of solvent behavior in protein crystals. 
    more » « less