Linear mixed models (LMMs) can be applied in the meta-analyses of responses from individuals across multiple contexts, increasing power to detect associations while accounting for confounding effects arising from within-individual variation. However, traditional approaches to fitting these models can be computationally intractable. Here, we describe an efficient and exact method for fitting a multiple-context linear mixed model. Whereas existing exact methods may be cubic in their time complexity with respect to the number of individuals, our approach for multiple-context LMMs (mcLMM) is linear. These improvements allow for large-scale analyses requiring computing time and memory magnitudes of order less than existing methods. As examples, we apply our approach to identify expression quantitative trait loci from large-scale gene expression data measured across multiple tissues as well as joint analyses of multiple phenotypes in genomewide association studies at biobank scale. 
                        more » 
                        « less   
                    
                            
                            Semiparametric mixed-effects model for analysis of non-invasive longitudinal hemodynamic responses during bone graft healing
                        
                    
    
            When dealing with longitudinal data, linear mixed-effects models (LMMs) are often used by researchers. However, LMMs are not always the most adequate models, especially if we expect a nonlinear relationship between the outcome and a continuous covariate. To allow for more flexibility, we propose the use of a semiparametric mixed-effects model to evaluate the overall treatment effect on the hemodynamic responses during bone graft healing and build a prediction model for the healing process. The model relies on a closed-form expectation–maximization algorithm, where the unknown nonlinear function is estimated using a Lasso-type procedure. Using this model, we were able to estimate the effect of time for individual mice in each group in a nonparametric fashion and the effect of the treatment while accounting for correlation between observations due to the repeated measurements. The treatment effect was found to be statistically significant, with the autograft group having higher total hemoglobin concentration than the allograft group. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1934962
- PAR ID:
- 10352990
- Editor(s):
- Demidenko, Eugene
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 17
- Issue:
- 4
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0265471
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Alessandra Carbone, Mohammed El-Kebir (Ed.)Linear mixed models (LMMs) can be applied in the meta-analyses of responses from individuals across multiple contexts, increasing power to detect associations while accounting for confounding effects arising from within-individual variation. However, traditional approaches to fitting these models can be computationally intractable. Here, we describe an efficient and exact method for fitting a multiple-context linear mixed model. Whereas existing exact methods may be cubic in their time complexity with respect to the number of individuals, our approach for multiple-context LMMs (mcLMM) is linear. These improvements allow for large-scale analyses requiring computing time and memory magnitudes of order less than existing methods. As examples, we apply our approach to identify expression quantitative trait loci from large-scale gene expression data measured across multiple tissues as well as joint analyses of multiple phenotypes in genome-wide association studies at biobank scale.more » « less
- 
            Linear mixed models (LMMs) are used extensively to model observations that are not independent. Parameter estimation for LMMs can be computationally prohibitive on big data. State-of-the-art learning algorithms require computational complexity which depends at least linearly on the dimension p of the covariates, and often use heuristics that do not offer theoretical guarantees. We present scalable algorithms for learning high-dimensional LMMs with sublinear computational complexity dependence on p. Key to our approach are novel dual estimators which use only kernel functions of the data, and fast computational techniques based on the subsampled randomized Hadamard transform. We provide theoretical guarantees for our learning algorithms, demonstrating the robustness of parameter estimation. Finally, we complement the theory with experiments on large synthetic and real data.more » « less
- 
            Precise estimation of treatment effects is crucial for accurately evaluating the intervention. While deep learning models have exhibited promising performance in learning counterfactual representations for treatment effect estimation (TEE), a major limitation in most of these models is that they often overlook the diversity of treatment effects across potential subgroups that have varying treatment effects and characteristics, treating the entire population as a homogeneous group. This limitation restricts the ability to precisely estimate treatment effects and provide targeted treatment recommendations. In this paper, we propose a novel treatment effect estimation model, named SubgroupTE, which incorporates subgroup identification in TEE. SubgroupTE identifies heterogeneous subgroups with different responses and more precisely estimates treatment effects by considering subgroup-specific treatment effects in the estimation process. In addition, we introduce an expectation–maximization (EM)-based training process that iteratively optimizes estimation and subgrouping networks to improve both estimation and subgroup identification. Comprehensive experiments on the synthetic and semi-synthetic datasets demonstrate the outstanding performance of SubgroupTE compared to the existing works for treatment effect estimation and subgrouping models. Additionally, a real-world study demonstrates the capabilities of SubgroupTE in enhancing targeted treatment recommendations for patients with opioid use disorder (OUD) by incorporating subgroup identification with treatment effect estimation.more » « less
- 
            Recent advances in instruction tuning have led to the development of State-of-the-Art Large Multimodal Models (LMMs). Given the novelty of these models the impact of visual adversarial attacks on LMMs has not been thoroughly examined. We conduct a comprehensive study of the robustness of various LMMs against different adversarial attacks evaluated across tasks including image classification image captioning and Visual Question Answer (VQA). We find that in general LMMs are not robust to visual adversarial inputs. However our findings suggest that context provided to the model via prompts--such as questions in a QA pair--helps to mitigate the effects of visual adversarial inputs. Notably the LMMs evaluated demonstrated remarkable resilience to such attacks on the ScienceQA task with only an 8.10% drop in performance compared to their visual counterparts which dropped 99.73%. We also propose a new approach to real-world image classification which we term query decomposition. By incorporating existence queries into our input prompt we observe diminished attack effectiveness and improvements in image classification accuracy. This research highlights a previously under explored facet of LMM robustness and sets the stage for future work aimed at strengthening the resilience of multimodal systems in adversarial environments.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    