Abstract Interannual precipitation variability profoundly influences society via its effects on agriculture, water resources, infrastructure, and disaster risks. In this study, we use dailyin situprecipitation observations from the global historical climatology network-daily (GHCN-D) to assess the ability of 21 Coupled Model Intercomparison Project Phase 6 (CMIP6) models, including the 50-member fifth-generation Canadian Earth System Model single model initial-condition large ensemble (CanESM5_SMILE), to realistically simulate historical interannual precipitation variability trends within 17 regions of the contiguous United States (CONUS). We assess how accurately the CMIP6 simulations align with observational data across annual, summer, and winter periods, focusing on four key hydrometeorological metrics, including interannual precipitation variability, relative interannual precipitation variability (coefficient of variation), annual mean precipitation, and annual wet day frequency. Our findings reveal that CMIP6 ensemble members generally reproduce the spatial patterns of observed trends in annual mean precipitation. In most regions, models agree well with the signs of observed changes in annual mean precipitation, though discrepancies in trend magnitude are evident. Further, observed trends in winter mean precipitation broadly exhibit a spatial pattern similar to that of the observed annual mean. However, analysis of the CanESM5_SMILE shows that trends in precipitation variability may primarily be the result of model-simulated internal variability, suggesting caution in interpreting multi-model single-realization ensemble results. Challenges in accurately simulating interannual precipitation variability underscore the need for ongoing model refinement and validation to enhance climate projections, especially in regions vulnerable to extreme precipitation events.
more »
« less
Evaluation of the CMIP6 Performance in Simulating Precipitation in the Amazon River Basin
The Brazilian Amazon provides important hydrological cycle functions, including precipitation regimes that bring water to the people and environment and are critical to moisture recycling and transport, and represents an important variable for climate models to simulate accurately. This paper evaluates the performance of 13 Coupled Model Intercomparison Project Phase 6 (CMIP6) models. This is done by discussing results from spatial pattern mapping, Taylor diagram analysis and Taylor skill score, annual climatology comparison, cumulative distribution analysis, and empirical orthogonal function (EOF) analysis. Precipitation analysis shows: (1) This region displays higher rainfall in the north-northwest and drier conditions in the south. Models tend to underestimate northern values or overestimate the central to northwest averages. (2) The southern Amazon has a more defined dry season (June, July, and August) and wet season (December, January, and February) and models simulate this well. The northern Amazon dry season tends to occur in August, September, and October and the wet season occurs in March, April, and May, and models are not able to capture the climatology as well. Models tend to produce too much rainfall at the start of the wet season and tend to either over- or under-estimate the dry season, although ensemble means typically display the overall pattern more precisely. (3) Models struggle to capture extreme values of precipitation except when precipitation values are close to 0. (4) EOF analysis shows that models capture the dominant mode of variability, which was the annual cycle or South American Monsoon System. (5) When all evaluation metrics are considered, the models that perform best are CESM2, MIROC6, MRIESM20, SAM0UNICON, and the ensemble mean. This paper supports research in determining the most up-to-date CMIP6 model performance of precipitation regime for 1981–2014 for the Brazilian Amazon. Results will aid in understanding future projections of precipitation for the selected subset of global climate models and allow scientists to construct reliable model ensembles, as precipitation plays a role in many sectors of the economy, including the ecosystem, agriculture, energy, and water security.
more »
« less
- PAR ID:
- 10353013
- Date Published:
- Journal Name:
- Climate
- Volume:
- 10
- Issue:
- 8
- ISSN:
- 2225-1154
- Page Range / eLocation ID:
- 122
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Water is redistributed from evaporation sources to precipitation sinks through atmospheric moisture transport. In the Brazilian Amazon, the spatial and temporal variability of dry season moisture sources for key agricultural regions has not been investigated. This study investigates moisture sources for dry season rainfall in the state of Rondônia in Brazil, especially during drought years. Using a precipitationshed framework, we quantified the variability of moisture contributions to rainfall in the state of Rondônia (Brazilian Amazon) and the influence of synoptic circulation patterns. Ocean evaporation accounts for 58% of mean dry season precipitation while continental recycling contributed 42%. During drought years, although forests maintain or increase evapotranspiration, the moisture contribution of both ocean and forests to dry season rainfall decreases due to the synoptic circulation changes, reducing the moisture transport into Rondônia.more » « less
-
Rainfall in the Amazon is influenced by atmospheric circulation dynamics on multiple spatiotemporal scales. Anthropogenic influences such as deforestation, land-use changes, and global climate change are also critical factors in determining rainfall in South America. Modeling studies have projected a drier climate with the ongoing deforestation in the Amazon, but observational evaluation of the variability of rainfall and deforestation patterns has been limited. This study analyzes spatiotemporal trends in rainfall between 1981 and 2020 and relationships with deforestation age in the Brazilian Legal Amazon (BLA). An improved rainfall dataset is derived by calibrating the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) data with observations from a rain gauge network in the BLA. Trend analysis is employed to identify significant changes in precipitation over the BLA. Satellite-based land cover data Mapbiomas and ET datasets are used to evaluate similar trends. While large spatial variability is observed, the results show coherent relationships between negative dry-season rainfall trends and old-age deforested areas. Deforestation aged up to a decade enhanced rainfall and older deforested regions have reduced rainfall during the dry season. These results suggest substantial changes in the hydroclimate of the BLA and increased vulnerability to future land cover change.more » « less
-
Abstract The South Asian summer monsoon strongly modulates regional temperature and humidity. While extreme dry heat peaks in the pre‐monsoon season, recent literature suggests that extreme humid heat can continue to build throughout the monsoon season. Here we explore the influence of monsoon onset and subseasonal precipitation variability on the occurrence of extreme wet bulb temperatures (Tw) across South Asia. We find that extreme Tw events often occur on rainy days during the monsoon season. However, the influence of precipitation on Tw varies with the background climatology of surface specific humidity. In climatologically drier areas, positive Tw anomalies tend to occur when precipitation increases due to either early onset or wet spells during the monsoon. In contrast, in climatologically humid areas, positive Tw anomalies occur during periods of suppressed precipitation, including both delayed onset and dry spells during the monsoon.more » « less
-
Abstract Prioritizing watershed management interventions relies on delineating homogeneous precipitation regions. In this study, we identify these regions in the Brazilian Legal Amazon based on the magnitude of Sen’s Slope trends using annual precipitation data from September to August, employing the Google Earth Engine platform. Utilizing the silhouette method, we determine four distinct clusters representing zones of homogeneous precipitation patterns. Cluster 0 exhibits a significant median increase in precipitation of 3.20 mm year−1over the period from 1981 to 2020. Cluster 1 shows a notable increase of 8.13 mm year−1, while Clusters 2 and 3 demonstrate reductions in precipitation of − 1.61 mm year−1and − 3.87 mm year−1, respectively, all statistically significant. Notably, the region known as the arc of deforestation falls within Cluster 2, indicating a concerning trend of reduced precipitation. Additionally, our analysis reveals significant correlations between Sea Surface Temperature (SST) in various oceanic regions and precipitation patterns over the Brazilian Legal Amazon. Particularly noteworthy is the strong positive correlation with SST in the South Atlantic, while negative correlations are observed with SST in the South Pacific and North Atlantic. These findings provide valuable insights for enhancing climate adaptation strategies in the Brazilian Legal Amazon region.more » « less
An official website of the United States government

