skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluation of historical precipitation interannual variability in CMIP6 over the United States
Abstract Interannual precipitation variability profoundly influences society via its effects on agriculture, water resources, infrastructure, and disaster risks. In this study, we use dailyin situprecipitation observations from the global historical climatology network-daily (GHCN-D) to assess the ability of 21 Coupled Model Intercomparison Project Phase 6 (CMIP6) models, including the 50-member fifth-generation Canadian Earth System Model single model initial-condition large ensemble (CanESM5_SMILE), to realistically simulate historical interannual precipitation variability trends within 17 regions of the contiguous United States (CONUS). We assess how accurately the CMIP6 simulations align with observational data across annual, summer, and winter periods, focusing on four key hydrometeorological metrics, including interannual precipitation variability, relative interannual precipitation variability (coefficient of variation), annual mean precipitation, and annual wet day frequency. Our findings reveal that CMIP6 ensemble members generally reproduce the spatial patterns of observed trends in annual mean precipitation. In most regions, models agree well with the signs of observed changes in annual mean precipitation, though discrepancies in trend magnitude are evident. Further, observed trends in winter mean precipitation broadly exhibit a spatial pattern similar to that of the observed annual mean. However, analysis of the CanESM5_SMILE shows that trends in precipitation variability may primarily be the result of model-simulated internal variability, suggesting caution in interpreting multi-model single-realization ensemble results. Challenges in accurately simulating interannual precipitation variability underscore the need for ongoing model refinement and validation to enhance climate projections, especially in regions vulnerable to extreme precipitation events.  more » « less
Award ID(s):
1854951
PAR ID:
10625342
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP
Date Published:
Journal Name:
Environmental Research: Climate
Volume:
3
Issue:
4
ISSN:
2752-5295
Page Range / eLocation ID:
045032
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Southeastern South America (SESA; encompassing Paraguay, Southern Brazil, Uruguay, and northern Argentina) experienced a 27% increase in austral summer precipitation from 1902-2019, one of the largest observed trends in seasonal precipitation globally. Previous research identifies Atlantic Multidecadal Variability and anthropogenic forcing from stratospheric ozone depletion and greenhouse gas emissions as key factors contributing to the positive precipitation trends in SESA. We analyze multi-model ensemble simulations from Phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP) and find that not only do Earth System Models simulate positive SESA precipitation trends that are much weaker over the historical interval, but some models persistently simulate negative SESA precipitation trends under historical forcings. Similarly, 16-member ensembles from two atmospheric models forced with observed historical sea surface temperatures never simulate precipitation trends that even reach the lower bound of the observed trend’s range of uncertainty. Moreover, while future 21 st -century projections from CMIP6 yield positive ensemble mean precipitation trends over SESA that grow with increasing greenhouse-gas emissions, the mean forced response never exceeds the observed historical trend. Pre-industrial control runs from CMIP6 indicate that some models do occasionally simulate centennial-scale trends in SESA that fall within the observational range, but most models do not. Results point to significant uncertainties in the attribution of anthropogenically forced influences on the observed increases in precipitation over SESA, while also suggesting that internal decadal-to-centennial variability of unknown origin and not present in state-of-the-art models may have also played a large role in generating the 20 th -21 st -century SESA precipitation trend. 
    more » « less
  2. The Brazilian Amazon provides important hydrological cycle functions, including precipitation regimes that bring water to the people and environment and are critical to moisture recycling and transport, and represents an important variable for climate models to simulate accurately. This paper evaluates the performance of 13 Coupled Model Intercomparison Project Phase 6 (CMIP6) models. This is done by discussing results from spatial pattern mapping, Taylor diagram analysis and Taylor skill score, annual climatology comparison, cumulative distribution analysis, and empirical orthogonal function (EOF) analysis. Precipitation analysis shows: (1) This region displays higher rainfall in the north-northwest and drier conditions in the south. Models tend to underestimate northern values or overestimate the central to northwest averages. (2) The southern Amazon has a more defined dry season (June, July, and August) and wet season (December, January, and February) and models simulate this well. The northern Amazon dry season tends to occur in August, September, and October and the wet season occurs in March, April, and May, and models are not able to capture the climatology as well. Models tend to produce too much rainfall at the start of the wet season and tend to either over- or under-estimate the dry season, although ensemble means typically display the overall pattern more precisely. (3) Models struggle to capture extreme values of precipitation except when precipitation values are close to 0. (4) EOF analysis shows that models capture the dominant mode of variability, which was the annual cycle or South American Monsoon System. (5) When all evaluation metrics are considered, the models that perform best are CESM2, MIROC6, MRIESM20, SAM0UNICON, and the ensemble mean. This paper supports research in determining the most up-to-date CMIP6 model performance of precipitation regime for 1981–2014 for the Brazilian Amazon. Results will aid in understanding future projections of precipitation for the selected subset of global climate models and allow scientists to construct reliable model ensembles, as precipitation plays a role in many sectors of the economy, including the ecosystem, agriculture, energy, and water security. 
    more » « less
  3. According to twenty-first century climate-model projections, greenhouse warming will intensify rainfall variability and extremes across the globe. However, verifying this prediction using observations has remained a substantial challenge owing to large natural rainfall fluctuations at regional scales. Here we show that deep learning successfully detects the emerging climate-change signals in daily precipitation fields during the observed record. We trained a convolutional neural network (CNN) with daily precipitation fields and annual global mean surface air temperature data obtained from an ensemble of present-day and future climate-model simulations. After applying the algorithm to the observational record, we found that the daily precipitation data represented an excellent predictor for the observed planetary warming, as they showed a clear deviation from natural variability since the mid-2010s. Furthermore, we analysed the deep-learning model with an explainable framework and observed that the precipitation variability of the weather timescale (period less than 10 days) over the tropical eastern Pacific and mid-latitude storm-track regions was most sensitive to anthropogenic warming. Our results highlight that, although the long-term shifts in annual mean precipitation remain indiscernible from the natural background variability, the impact of global warming on daily hydrological fluctuations has already emerged. 
    more » « less
  4. Abstract Attribution and prediction of global and regional warming requires a better understanding of the magnitude and spatial characteristics of internal global mean surface air temperature (GMST) variability. We examine interdecadal GMST variability in Coupled Modeling Intercomparison Projects, Phases 3, 5, and 6 (CMIP3, CMIP5, and CMIP6) preindustrial control (piControl), last millennium, and historical simulations and in observational data. We find that several CMIP6 simulations show more GMST interdecadal variability than the previous generations of model simulations. Nonetheless, we find that 100‐year trends in CMIP6 piControl simulations never exceed the maximum observed warming trend. Furthermore, interdecadal GMST variability in the unforced piControl simulations is associated with regional variability in the high latitudes and the east Pacific, whereas interdecadal GMST variability in instrumental data and in historical simulations with external forcing is more globally coherent and is associated with variability in tropical deep convective regions. 
    more » « less
  5. Abstract To examine the atmospheric responses to Arctic sea-ice variability in the Northern Hemisphere cold season (October to following March), this study uses a coordinated set of large-ensemble experiments of nine atmospheric general circulation models (AGCMs) forced with observed daily-varying sea-ice, sea-surface temperature, and radiative forcings prescribed during the 1979-2014 period, together with a parallel set of experiments where Arctic sea ice is substituted by its climatology. The simulations of the former set reproduce the near-surface temperature trends in reanalysis data, with similar amplitude, and their multi-model ensemble mean (MMEM) shows decreasing sea-level pressure over much of the polar cap and Eurasia in boreal autumn. The MMEM difference between the two experiments allows isolating the effects of Arctic sea-ice loss, which explain a large portion of the Arctic warming trends in the lower troposphere and drives a small but statistically significant weakening of the wintertime Arctic Oscillation. The observed interannual co-variability between sea-ice extent in the Barents-Kara Seas and lagged atmospheric circulation is distinguished from the effects of confounding factors based on multiple regression, and quantitatively compared to the co-variability in MMEMs. The interannual sea-ice decline followed by a negative North Atlantic Oscillation-like anomaly found in observations is also seen in the MMEM differences, with consistent spatial structure but much smaller amplitude. This result suggests that the sea-ice impacts on trends and interannual atmospheric variability simulated by AGCMs could be underestimated, but caution is needed because internal atmospheric variability may have affected the observed relationship. 
    more » « less