skip to main content

This content will become publicly available on January 1, 2023

Title: nGauge: Integrated and Extensible Neuron Morphology Analysis in Python
The study of neuron morphology requires robust and comprehensive methods to quantify the differences between neurons of different subtypes and animal species. Several software packages have been developed for the analysis of neuron tracing results stored in the standard SWC format. The packages, however, provide relatively simple quantifications and their non-extendable architecture prohibit their use for advanced data analysis and visualization. We developed nGauge, a Python toolkit to support the parsing and analysis of neuron morphology data. As an application programming interface (API), nGauge can be referenced by other popular open-source software to create custom informatics analysis pipelines and advanced visualizations. nGauge defines an extendable data structure that handles volumetric constructions (e.g. soma), in addition to the SWC linear reconstructions, while remaining lightweight. This greatly extends nGauge’s data compatibility.
Authors:
; ; ; ; ; ;
Award ID(s):
1707316
Publication Date:
NSF-PAR ID:
10353054
Journal Name:
Neuroinformatics
ISSN:
1539-2791
Sponsoring Org:
National Science Foundation
More Like this
  1. Proteins and nucleic acids participate in essentially every biochemical process in living organisms, and the elucidation of their structure and motions is essential for our understanding how these molecular machines perform their function. Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful versatile technique that provides critical information on the molecular structure and dynamics. Spin-relaxation data are used to determine the overall rotational diffusion and local motions of biological macromolecules, while residual dipolar couplings (RDCs) reveal local and long-range structural architecture of these molecules and their complexes. This information allows researchers to refine structures of proteins and nucleic acids and provides restraints for molecular docking. Several software packages have been developed by NMR researchers in order to tackle the complicated experimental data analysis and structure modeling. However, many of them are offline packages or command-line applications that require users to set up the run time environment and also to possess certain programming skills, which inevitably limits accessibility of this software to a broad scientific community. Here we present new science gateways designed for NMR/structural biology community that address these current limitations in NMR data analysis. Using the GenApp technology for scientific gateways (https://genapp.rocks), we successfully transformed ROTDIF and ALTENS, two offlinemore »packages for bio-NMR data analysis, into science gateways that provide advanced computational functionalities, cloud-based data management, and interactive 2D and 3D plotting and visualizations. Furthermore, these gateways are integrated with molecular structure visualization tools (Jmol) and with gateways/engines (SASSIE-web) capable of generating huge computer-simulated structural ensembles of proteins and nucleic acids. This enables researchers to seamlessly incorporate conformational ensembles into the analysis in order to adequately take into account structural heterogeneity and dynamic nature of biological macromolecules. ROTDIF-web offers a versatile set of integrated modules/tools for determining and predicting molecular rotational diffusion tensors and model-free characterization of bond dynamics in biomacromolecules and for docking of molecular complexes driven by the information extracted from NMR relaxation data. ALTENS allows characterization of the molecular alignment under anisotropic conditions, which enables researchers to obtain accurate local and long-range bond-vector restraints for refining 3-D structures of macromolecules and their complexes. We will describe our experience bringing our programs into GenApp and illustrate the use of these gateways for specific examples of protein systems of high biological significance. We expect these gateways to be useful to structural biologists and biophysicists as well as NMR community and to stimulate other researchers to share their scientific software in a similar way.« less
  2. Abstract Over the past few decades, the measurement precision of some pulsar timing experiments has advanced from ∼10 μ s to ∼10 ns, revealing many subtle phenomena. Such high precision demands both careful data handling and sophisticated timing models to avoid systematic error. To achieve these goals, we present PINT ( P INT I s N ot T empo3 ), a high-precision Python pulsar timing data analysis package, which is hosted on GitHub and available on the Python Package Index (PyPI) as pint-pulsar . PINT is well tested, validated, object oriented, and modular, enabling interactive data analysis and providing an extensible and flexible development platform for timing applications. It utilizes well-debugged public Python packages (e.g., the N um P y and A stropy libraries) and modern software development schemes (e.g., version control and efficient development with git and GitHub) and a continually expanding test suite for improved reliability, accuracy, and reproducibility. PINT is developed and implemented without referring to, copying, or transcribing the code from other traditional pulsar timing software packages (e.g., Tempo / Tempo2 ) and therefore provides a robust tool for cross-checking timing analyses and simulating pulse arrival times. In this paper, we describe the design, use, andmore »validation of PINT , and we compare timing results between it and Tempo and Tempo2 .« less
  3. Long term sustainability of the high energy physics (HEP) research software ecosystem is essential for the field. With upgrades and new facilities coming online throughout the 2020s this will only become increasingly relevant throughout this decade. Meeting this sustainability challenge requires a workforce with a combination of HEP domain knowledge and advanced software skills. The required software skills fall into three broad groups. The first is fundamental and generic software engineering (e.g. Unix, version control,C++, continuous integration). The second is knowledge of domain specific HEP packages and practices (e.g., the ROOT data format and analysis framework). The third is more advanced knowledge involving more specialized techniques. These include parallel programming, machine learning and data science tools, and techniques to preserve software projects at all scales. This paper dis-cusses the collective software training program in HEP and its activities led by the HEP Software Foundation (HSF) and the Institute for Research and Innovation in Software in HEP (IRIS-HEP). The program equips participants with an array of software skills that serve as ingredients from which solutions to the computing challenges of HEP can be formed. Beyond serving the community by ensuring that members are able to pursue research goals, this program servesmore »individuals by providing intellectual capital and transferable skills that are becoming increasingly important to careers in the realm of software and computing, whether inside or outside HEP« less
  4. Long term sustainability of the high energy physics (HEP) research software ecosystem is essential for the field. With upgrades and new facilities coming online throughout the 2020s this will only become increasingly relevant throughout this decade. Meeting this sustainability challenge requires a workforce with a combination of HEP domain knowledge and advanced software skills. The required software skills fall into three broad groups. The first is fundamental and generic software engineering (e.g. Unix, version control,C++, continuous integration). The second is knowledge of domain specific HEP packages and practices (e.g., the ROOT data format and analysis framework). The third is more advanced knowledge involving more specialized techniques. These include parallel programming, machine learning and data science tools, and techniques to preserve software projects at all scales. This paper dis-cusses the collective software training program in HEP and its activities led by the HEP Software Foundation (HSF) and the Institute for Research and Innovation in Software in HEP (IRIS-HEP). The program equips participants with an array of software skills that serve as ingredients from which solutions to the computing challenges of HEP can be formed. Beyond serving the community by ensuring that members are able to pursue research goals, this program servesmore »individuals by providing intellectual capital and transferable skills that are becoming increasingly important to careers in the realm of software and computing, whether inside or outside HEP« less
  5. Abstract

    The long-term sustainability of the high-energy physics (HEP) research software ecosystem is essential to the field. With new facilities and upgrades coming online throughout the 2020s, this will only become increasingly important. Meeting the sustainability challenge requires a workforce with a combination of HEP domain knowledge and advanced software skills. The required software skills fall into three broad groups. The first is fundamental and generic software engineering (e.g., Unix, version control, C++, and continuous integration). The second is knowledge of domain-specific HEP packages and practices (e.g., the ROOT data format and analysis framework). The third is more advanced knowledge involving specialized techniques, including parallel programming, machine learning and data science tools, and techniques to maintain software projects at all scales. This paper discusses the collective software training program in HEP led by the HEP Software Foundation (HSF) and the Institute for Research and Innovation in Software in HEP (IRIS-HEP). The program equips participants with an array of software skills that serve as ingredients for the solution of HEP computing challenges. Beyond serving the community by ensuring that members are able to pursue research goals, the program serves individuals by providing intellectual capital and transferable skills important to careers inmore »the realm of software and computing, inside or outside HEP.

    « less