skip to main content

Title: Experimental classical entanglement in a 16 acoustic qubit-analogue
Abstract The possibility of achieving and controlling scalable classically entangled, i.e., inseparable, multipartite states, would fundamentally challenge the advantages of quantum systems in harnessing the power of complexity in information science. Here, we investigate experimentally the extent of classical entanglement in a $$16$$ 16 acoustic qubit-analogue platform. The acoustic qubit-analogue, a.k.a., logical phi-bit, results from the spectral partitioning of the nonlinear acoustic field of externally driven coupled waveguides. Each logical phi-bit is a two-level subsystem characterized by two independently measurable phases. The phi-bits are co-located within the same physical space enabling distance independent interactions. We chose a vector state representation of the $$16$$ 16 -phi-bit system which lies in a $${2}^{16}$$ 2 16 -dimensional Hilbert space. The calculation of the entropy of entanglement demonstrates the possibility of achieving inseparability of the vector state and of navigating the corresponding Hilbert space. This work suggests a new direction in harnessing the complexity of classical inseparability in information science.
Authors:
; ;
Award ID(s):
1640860
Publication Date:
NSF-PAR ID:
10353190
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a model of an externally driven acoustic metamaterial constituted of a nonlinear parallel array of coupled acoustic waveguides that supports logical phi-bits, classical analogues of quantum bits (qubit). Descriptions of correlated multiple phi-bit systems emphasize the importance of representations of phi-bit and multiple phi-bit vector states within the context of their corresponding Hilbert space. Experimental data are used to demonstrate the realization of the single phi-bit Hadamard gate and the phase shift gate. A three phi-bit system is also used to illustrate the development of multiple phi-bit gates as well as a simple quantum-like algorithm. These demonstrations set the stage for the implementation of a digital quantum analogue computing platform based on acoustic metamaterial that can implement quantum-like gates and may offer promise as an efficient platform for the simulation of materials.
  2. Abstract The Controlled-NOT (CNOT) gate is the key to unlock the power of quantum computing as it is a fundamental component of a universal set of gates. We demonstrate the operation of a two-bit C-NOT quantum-like gate using classical qubit acoustic analogues, called herein logical phi-bits. The logical phi-bits are supported by an externally driven nonlinear acoustic metamaterial composed of a parallel array of three elastically coupled waveguides. A logical phi-bit has a two-state degree of freedom associated with the two independent relative phases of the acoustic wave in the three waveguides. A simple physical manipulation involving the detuning of the frequency of one of the external drivers is shown to operate on the complex vectors in the Hilbert space of pairs of logical phi-bits. This operation achieves a systematic and predictable C-NOT gate with unambiguously measurable input and output. The possibility of scaling the approach to more phi-bits is promising.
  3. Abstract

    Qudit entanglement is an indispensable resource for quantum information processing since increasing dimensionality provides a pathway to higher capacity and increased noise resilience in quantum communications, and cluster-state quantum computations. In continuous-variable time–frequency entanglement, encoding multiple qubits per photon is only limited by the frequency correlation bandwidth and detection timing jitter. Here, we focus on the discrete-variable time–frequency entanglement in a biphoton frequency comb (BFC), generating by filtering the signal and idler outputs with a fiber Fabry–Pérot cavity with 45.32 GHz free-spectral range (FSR) and 1.56 GHz full-width-at-half-maximum (FWHM) from a continuous-wave (cw)-pumped type-II spontaneous parametric downconverter (SPDC). We generate a BFC whose time-binned/frequency-binned Hilbert space dimensionality is at least 324, based on the assumption of a pure state. Such BFC’s dimensionality doubles up to 648, after combining with its post-selected polarization entanglement, indicating a potential 6.28 bits/photon classical-information capacity. The BFC exhibits recurring Hong–Ou–Mandel (HOM) dips over 61 time bins with a maximum visibility of 98.4% without correction for accidental coincidences. In a post-selected measurement, it violates the Clauser–Horne–Shimony–Holt (CHSH) inequality for polarization entanglement by up to 18.5 standard deviations with anS-parameter of up to 2.771. It has Franson interference recurrences in 16 time bins with a maximum visibility of 96.1%more »without correction for accidental coincidences. From the zeroth- to the third-order Franson interference, we infer an entanglement of formation (Eof) up to 1.89 ± 0.03 ebits—where 2 ebits is the maximal entanglement for a 4 × 4 dimensional biphoton—as a lower bound on the 61 time-bin BFC’s high-dimensional entanglement. To further characterize time-binned/frequency-binned BFCs we obtain Schmidt mode decompositions of BFCs generated using cavities with 45.32, 15.15, and 5.03 GHz FSRs. These decompositions confirm the time–frequency scaling from Fourier-transform duality. Moreover, we present the theory of conjugate Franson interferometry—because it is characterized by the state’s joint-temporal intensity (JTI)—which can further help to distinguish between pure-state BFC and mixed state entangled frequency pairs, although the experimental implementation is challenging and not yet available. In summary, our BFC serves as a platform for high-dimensional quantum information processing and high-dimensional quantum key distribution (QKD).

    « less
  4. Abstract The ability to engineer parallel, programmable operations between desired qubits within a quantum processor is key for building scalable quantum information systems 1,2 . In most state-of-the-art approaches, qubits interact locally, constrained by the connectivity associated with their fixed spatial layout. Here we demonstrate a quantum processor with dynamic, non-local connectivity, in which entangled qubits are coherently transported in a highly parallel manner across two spatial dimensions, between layers of single- and two-qubit operations. Our approach makes use of neutral atom arrays trapped and transported by optical tweezers; hyperfine states are used for robust quantum information storage, and excitation into Rydberg states is used for entanglement generation 3–5 . We use this architecture to realize programmable generation of entangled graph states, such as cluster states and a seven-qubit Steane code state 6,7 . Furthermore, we shuttle entangled ancilla arrays to realize a surface code state with thirteen data and six ancillary qubits 8 and a toric code state on a torus with sixteen data and eight ancillary qubits 9 . Finally, we use this architecture to realize a hybrid analogue–digital evolution 2 and use it for measuring entanglement entropy in quantum simulations 10–12 , experimentally observing non-monotonic entanglement dynamicsmore »associated with quantum many-body scars 13,14 . Realizing a long-standing goal, these results provide a route towards scalable quantum processing and enable applications ranging from simulation to metrology.« less
  5. Understanding the computational power of noisy intermediate-scale quantum (NISQ) devices is of both fundamental and practical importance to quantum information science. Here, we address the question of whether error-uncorrected noisy quantum computers can provide computational advantage over classical computers. Specifically, we study noisy random circuit sampling in one dimension (or 1D noisy RCS) as a simple model for exploring the effects of noise on the computational power of a noisy quantum device. In particular, we simulate the real-time dynamics of 1D noisy random quantum circuits via matrix product operators (MPOs) and characterize the computational power of the 1D noisy quantum system by using a metric we call MPO entanglement entropy. The latter metric is chosen because it determines the cost of classical MPO simulation. We numerically demonstrate that for the two-qubit gate error rates we considered, there exists a characteristic system size above which adding more qubits does not bring about an exponential growth of the cost of classical MPO simulation of 1D noisy systems. Specifically, we show that above the characteristic system size, there is an optimal circuit depth, independent of the system size, where the MPO entanglement entropy is maximized. Most importantly, the maximum achievable MPO entanglement entropymore »is bounded by a constant that depends only on the gate error rate, not on the system size. We also provide a heuristic analysis to get the scaling of the maximum achievable MPO entanglement entropy as a function of the gate error rate. The obtained scaling suggests that although the cost of MPO simulation does not increase exponentially in the system size above a certain characteristic system size, it does increase exponentially as the gate error rate decreases, possibly making classical simulation practically not feasible even with state-of-the-art supercomputers.« less