- NSF-PAR ID:
- 10353226
- Date Published:
- Journal Name:
- Frontiers in Forests and Global Change
- Volume:
- 5
- ISSN:
- 2624-893X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Hui, Dafeng (Ed.)Wildfire frequency and extent is increasing throughout the boreal forest-tundra ecotone as climate warms. Understanding the impacts of wildfire throughout this ecotone is required to make predictions of the rate and magnitude of changes in boreal-tundra landcover, its future flammability, and associated feedbacks to the global carbon (C) cycle and climate. We studied 48 sites spanning a gradient from tundra to low-density spruce stands that were burned in an extensive 2013 wildfire on the north slope of the Alaska Range in Denali National Park and Preserve, central Alaska. We assessed wildfire severity and C emissions, and determined the impacts of severity on understory vegetation composition, conifer tree recruitment, and active layer thickness (ALT). We also assessed conifer seed rain and used a seeding experiment to determine factors controlling post-fire tree regeneration. We found that an average of 2.18 ± 1.13 Kg C m -2 was emitted from this fire, almost 95% of which came from burning of the organic soil. On average, burn depth of the organic soil was 10.6 ± 4.5 cm and both burn depth and total C combusted increased with pre-fire conifer density. Sites with higher pre-fire conifer density were also located at warmer and drier landscape positions and associated with increased ALT post-fire, greater changes in pre- and post-fire understory vegetation communities, and higher post-fire boreal tree recruitment. Our seed rain observations and seeding experiment indicate that the recruitment potential of conifer trees is limited by seed availability in this forest-tundra ecotone. We conclude that the expected climate-induced forest infilling (i.e. increased density) at the forest-tundra ecotone could increase fire severity, but this infilling is unlikely to occur without increases in the availability of viable seed.more » « less
-
Abstract Conifer forest resilience may be threatened by increasing wildfire activity and compound disturbances in western North America. Fire refugia enhance forest resilience, yet may decline over time due to delayed mortality—a process that remains poorly understood at landscape and regional scales. To address this uncertainty, we used high‐resolution satellite imagery (5‐m pixel) to map and quantify delayed mortality of conifer tree cover between 1 and 5 years postfire, across 30 large wildfires that burned within three montane ecoregions in the western United States. We used statistical models to explore the influence of burn severity, topography, soils, and climate moisture deficit on delayed mortality. We estimate that delayed mortality reduced live conifer tree cover by 5%–25% at the fire perimeter scale and 12%–15% at the ecoregion scale. Remotely sensed burn severity (1‐year postfire) was the strongest predictor of delayed mortality, indicating patch‐level fire effects are a strong proxy for fire injury severity among surviving trees that eventually perish. Delayed mortality rates were further influenced by long‐term average and short‐term postfire climate moisture deficits, illustrating the impact of drought on fire‐injured tree survival. Our work demonstrates that delayed mortality in conifer forests of the western United States can be remotely quantified at a fine grain and landscape scale, is a spatially extensive phenomenon, is driven by fire–climate–environment interactions, and has important ecological implications.
-
Abstract The spatial overlap of multiple ecological disturbances in close succession has the capacity to alter trajectories of ecosystem recovery. Widespread bark beetle outbreaks and wildfire have affected many forests in western North America in the past two decades in areas of important habitat for native ungulates. Bark beetle outbreaks prior to fire may deplete seed supply of the host species, and differences in fire‐related regeneration strategies among species may shift the species composition and structure of the initial forest trajectory. Subsequent browsing of postfire tree regeneration by large ungulates, such as elk (
Cervus canadensis ), may limit the capacity for regeneration to grow above the browse zone to form the next forest canopy. Five stand‐replacing wildfires burned ~60,000 ha of subalpine forest that had previously been affected by severe (>90% mortality) outbreaks of spruce beetle (SB,Dendroctonus rufipennis ) in Engelmann spruce (Picea engelmannii ) in 2012–2013 in southwestern Colorado. Here we examine the drivers of variability in abundance of newly established conifer tree seedlings [spruce and subalpine fir (Abies lasiocarpa )] and resprouts of quaking aspen (Populus tremuloides ) following the short‐interval sequence of SB outbreaks and wildfire (2–8 yr between SB outbreak and fire) at sites where we previously reconstructed severities of SB and fire. We then examine the implications of ungulate browsing for forest recovery. We found that abundances of postfire spruce seedling establishment decreased substantially in areas of severe SB outbreak. Prolific aspen resprouting in stands with live aspen prior to fire will favor an initial postfire forest trajectory dominated by aspen. However, preferential browsing of postfire aspen resprouts by ungulates will likely slow the rate of canopy recovery but browsing is unlikely to alter the species composition of the future forest canopy. Collectively, our results show that SB outbreak prior to fire increases the vulnerability of spruce–fir forests to shifts in forest type (conifer to aspen) and physiognomic community type (conifer forest to non‐forest). By identifying where compounded disturbance interactions are likely to limit recovery of forests or tree species, our findings are useful for developing adaptive management strategies in the context of warming climate and shifting disturbance regimes. -
Abstract Increased wildfire activity combined with warm and dry post-fire conditions may undermine the mechanisms maintaining forest resilience to wildfires, potentially causing ecosystem transitions, or fire-catalyzed vegetation shifts. Stand-replacing fire is especially likely to catalyze vegetation shifts expected from climate change, by killing mature trees that are less sensitive to climate than juveniles. To understand the vulnerability of forests to fire-catalyzed vegetation shifts it is critical to identify both where fires will burn with stand-replacing severity and where climate conditions limit seedling recruitment. We used an extensive dendrochronological dataset to model the influence of seasonal climate on post-fire recruitment probability for ponderosa pine and Douglas-fir. We applied this model to project annual recruitment probability in the US intermountain west under contemporary and future climate conditions, which we compared to modeled probability of stand-replacing fire. We categorized areas as ‘vulnerable to fire-catalyzed vegetation shifts,’ if they were likely to burn at stand-replacing severity, if a fire were to occur, and had post-fire climate conditions unsuitable for tree recruitment. Climate suitability for recruitment declined over time in all ecoregions: 21% and 15% of the range of ponderosa pine and Douglas-fir, respectively, had climate conditions unsuitable for recruitment in the 1980s, whereas these values increased to 61% (ponderosa pine) and 34% (Douglas-fir) for the future climate scenario. Less area was vulnerable to fire-catalyzed vegetation shifts, but these values also increased over time, from 6% and 4% of the range of ponderosa pine and Douglas-fir in the 1980s, to 16% (ponderosa pine) and 10% (Douglas-fir) under the future climate scenario. Southern ecoregions had considerably higher vulnerability to fire-catalyzed vegetation shifts than northern ecoregions. Overall, our results suggest that the combination of climate warming and an increase in wildfire activity may substantially impact species distributions through fire-catalyzed vegetation shifts.
-
Effects of dispersal‐ and niche‐based factors on tree recruitment in tropical wet forest restoration
Abstract Both dispersal‐ and niche‐based factors can impose major barriers on tree establishment. Our understanding of how these factors interact to determine recruitment rates is based primarily on findings from mature tropical forests, despite the fact that a majority of tropical forests are now secondary. Consequently, factors influencing seed limitation and the seed‐to‐seedling transition (STS) in disturbed landscapes, and how those factors shift during succession, are not well understood. We used a 3.5‐yr record of seed rain and seedling establishment to investigate factors influencing tree recruitment after a decade of recovery in a tropical wet forest restoration experiment in southern Costa Rica. We asked (1) how do a range of restoration treatments (natural regeneration, applied nucleation, plantation), canopy cover, and life‐history traits influence the STS and (2) how do seed and establishment limitation (lack of seed arrival or lack of seedling recruitment, respectively) influence vegetation recovery within restoration treatments as compared to remnant forest? We did not observe any differences in STS rates across restoration treatments. However, STS rates were lowest in adjacent later successional remnant forests, where seed source availability did not highly limit seed arrival, underscoring that niche‐based processes may increasingly limit recruitment as succession unfolds. Additionally, larger‐seeded species had consistently higher STS rates across treatments and remnant forests, though establishment limitation for these species was lowest in the remnant forests. Species were generally seed limited and almost all were establishment limited; these patterns were consistent across treatments. However, our results suggest that differences in recruitment rates could be driven by differential dispersal to treatments with higher canopy cover. We found evidence that barriers to recruitment shift during succession, with the influence of seed limitation, mediated by species‐level seed deposition rates, giving way to niche‐based processes. However, establishment limitation was lowest in the remnant forests for large‐seeded and late successional species, highlighting the importance of habitat specialization and life‐history traits in dictating recruitment dynamics. Overall, results demonstrate that active restoration approaches such as tree planting catalyze forest recovery, not only by decreasing components of seed limitation, but also by developing canopy cover that increases establishment rates of larger‐seeded species.