The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, March 24 until 8:00 AM ET on Saturday, March 25 due to maintenance. We apologize for the inconvenience.
Explore Scholarly Publications and Datasets in the NSF-PAR
Accepted Manuscript:
Interactions Between Fire Refugia and Climate-Environment Conditions Determine Mesic Subalpine Forest Recovery After Large and Severe Wildfires
This content will become publicly available on May 20, 2023
Title: Interactions Between Fire Refugia and Climate-Environment Conditions Determine Mesic Subalpine Forest Recovery After Large and Severe Wildfires
Infrequent stand-replacing wildfires are characteristic of mesic and/or cool conifer forests in western North America, where forest recovery within high-severity burn patch interiors can be slow, yet successful over long temporal periods (decades to centuries). Increasing fire frequency and high-severity burn patch size, under a warming climate, however, may challenge post-fire forest recovery, promoting landscape-level shifts in forest structure, composition, and distribution of non-forest patches. Crucial to a delay and/or impediment to this shift, fire refugia (i.e., remnant seed sources) may determine forest recovery trajectories and potential forest state-transitions. To examine how fire refugia attributes (i.e. extent, composition, and structure) interact with local climate and environmental conditions to determine post-fire forest recovery responses, we developed fine-grain maps of fire refugia via remote sensing and conducted field-based assessment of post-fire conifer tree establishment largely originating (i.e., dispersed) from fire refugium in the Central Cascade Range of the Pacific Northwest United States. We found that limitations on seed availability, represented by the distance 2 -weighted density (D 2 WD) of fine-grain refugia extent, largely explained post-fire tree establishment responses within our relatively mesic and cool subalpine study sites. Interactions between seed availability, climate, and environmental conditions indicated that the structural attributes of more »
refugia (e.g., tree height) and site abiotic/biotic environmental controls (e.g., climate water deficit, canopy cover, and coarse woody debris cover) interplayed to constrain or enhance species-specific tree establishment responses. Importantly, these interactions illustrate that when seed availability is critically low for a given area, climate-environment conditions may strongly determine whether forests recover following fire(s). Toward modelling and predicting tree establishment responses and potential forest state-transitions after large stand-replacing fires(s), our study demonstrates the importance of accurately quantifying seed availability via the fine-grain extent, configuration, and attributes of remnant seed source legacies. « less
Wildfire frequency and extent is increasing throughout the boreal forest-tundra ecotone as climate warms. Understanding the impacts of wildfire throughout this ecotone is required to make predictions of the rate and magnitude of changes in boreal-tundra landcover, its future flammability, and associated feedbacks to the global carbon (C) cycle and climate. We studied 48 sites spanning a gradient from tundra to low-density spruce stands that were burned in an extensive 2013 wildfire on the north slope of the Alaska Range in Denali National Park and Preserve, central Alaska. We assessed wildfire severity and C emissions, and determined the impacts of severity on understory vegetation composition, conifer tree recruitment, and active layer thickness (ALT). We also assessed conifer seed rain and used a seeding experiment to determine factors controlling post-fire tree regeneration. We found that an average of 2.18 ± 1.13 Kg C m -2 was emitted from this fire, almost 95% of which came from burning of the organic soil. On average, burn depth of the organic soil was 10.6 ± 4.5 cm and both burn depth and total C combusted increased with pre-fire conifer density. Sites with higher pre-fire conifer density were also located at warmer and drier landscapemore »positions and associated with increased ALT post-fire, greater changes in pre- and post-fire understory vegetation communities, and higher post-fire boreal tree recruitment. Our seed rain observations and seeding experiment indicate that the recruitment potential of conifer trees is limited by seed availability in this forest-tundra ecotone. We conclude that the expected climate-induced forest infilling (i.e. increased density) at the forest-tundra ecotone could increase fire severity, but this infilling is unlikely to occur without increases in the availability of viable seed.« less
Littlefield, Caitlin E.; Dobrowski, Solomon Z.; Abatzoglou, John T.; Parks, Sean A.; Davis, Kimberley T.(
, Proceedings of the National Academy of Sciences)
Researchers are increasingly examining patterns and drivers of postfire forest recovery amid growing concern that climate change and intensifying fires will trigger ecosystem transformations. Diminished seed availability and postfire drought have emerged as key constraints on conifer recruitment. However, the spatial and temporal extent to which recurring modes of climatic variability shape patterns of postfire recovery remain largely unexplored. Here, we identify a north–south dipole in annual climatic moisture deficit anomalies across the Interior West of the US and characterize its influence on forest recovery from fire. We use annually resolved establishment models from dendrochronological records to correlate this climatic dipole with short-term postfire juvenile recruitment. We also examine longer-term recovery trajectories using Forest Inventory and Analysis data from 989 burned plots. We show that annual postfire ponderosa pine recruitment probabilities in the northern Rocky Mountains (NR) and the southwestern US (SW) track the strength of the dipole, while declining overall due to increasing aridity. This indicates that divergent recovery trajectories may be triggered concurrently across large spatial scales: favorable conditions in the SW can correspond to drought in the NR that inhibits ponderosa pine establishment, and vice versa. The imprint of this climatic dipole is manifest for years postfire,more »as evidenced by dampened long-term likelihoods of juvenile ponderosa pine presence in areas that experienced postfire drought. These findings underscore the importance of climatic variability at multiple spatiotemporal scales in driving cross-regional patterns of forest recovery and have implications for understanding ecosystem transformations and species range dynamics under global change.« less
Field, Jason P.; Breshears, David D.; Bradford, John B.; Law, Darin J.; Feng, Xiao; Allen, Craig D.(
, Frontiers in Forests and Global Change)
Drought and warming increasingly are causing widespread tree die-offs and extreme wildfires. Forest managers are struggling to improve anticipatory forest management practices given more frequent, extensive, and severe wildfire and tree die-off events triggered by “hotter drought”—drought under warmer than historical conditions. Of even greater concern is the increasing probability of multi-year droughts, or “megadroughts”—persistent droughts that span years to decades, and that under a still-warming climate, will also be hotter than historical norms. Megadroughts under warmer temperatures are disconcerting because of their potential to trigger more severe forest die-off, fire cycles, pathogens, and insect outbreaks. In this Perspective, we identify potential anticipatory and/or concurrent options for non-timber forest management actions under megadrought, which by necessity are focused more at finer spatial scales such as the stand level using higher-intensity management. These management actions build on silvicultural practices focused on growth and yield (but not harvest). Current management options that can be focused at finer scales include key silvicultural practices: selective thinning; use of carefully selected forward-thinking seed mixes; site contouring; vegetation and pest management; soil erosion control; and fire management. For the extreme challenges posed by megadroughts, management will necessarily focus even more on finer-scale, higher-intensity actions for prioritymore »locations such as fostering stand refugia; assisted stand recovery via soil amendments; enhanced root development; deep soil water retention; and shallow water impoundments. Drought-induced forest die-off from megadrought likely will lead to fundamental changes in the structure, function, and composition of forest stands and the ecosystem services they provide.« less
Abstract Key message Black spruce ( Picea mariana (Mill.) B.S.P.) has historically self-replaced following wildfire, but recent evidence suggests that this is changing. One factor could be negative impacts of intensifying fire activity on black spruce seed rain. We investigated this by measuring black spruce seed rain and seedling establishment. Our results suggest that increases in fire activity could reduce seed rain meaning reductions in black spruce establishment. Context Black spruce is an important conifer in boreal North America that develops a semi-serotinous, aerial seedbank and releases a pulse of seeds after fire. Variation in postfire seed rain has important consequences for black spruce regeneration and stand composition. Aims We explore the possible effects of changes in fire regime on the abundance and viability of black spruce seeds following a very large wildfire season in the Northwest Territories, Canada (NWT). Methods We measured postfire seed rain over 2 years at 25 black spruce-dominated sites and evaluated drivers of stand characteristics and environmental conditions on total black spruce seed rain and viability. Results We found a positive relationship between black spruce basal area and total seed rain. However, at high basal areas, this increasing rate of seed rain was not maintained.more »Viable seed rain was greater in stands that were older, closer to unburned edges, and where canopy combustion was less severe. Finally, we demonstrated positive relationships between seed rain and seedling establishment, confirming our measures of seed rain were key drivers of postfire forest regeneration. Conclusion These results indicate that projected increases in fire activity will reduce levels of black spruce recruitment following fire.« less
Hussain, Mir Zaman; Hamilton, Stephen; Robertson, G. Philip; Basso, Bruno(
)
Abstract
Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems may
leach legacy P from past cropland management.
Methods
Experimental details The Biofuel Cropping System Experiment (BCSE) is located at the W.K. Kellogg Biological Station (KBS) (42.3956° N, 85.3749° W; elevation 288 m asl) in southwestern Michigan, USA. This site is a part of the Great Lakes Bioenergy Research Center (www.glbrc.org) and is a Long-term Ecological Research site (www.lter.kbs.msu.edu). Soils are mesic Typic Hapludalfs developed on glacial outwash54 with high sand content (76% in the upper 150 cm) intermixed with silt-rich loess in the upper 50 cm55. The water table lies approximately 12–14 m below the surface. The climate is humid temperate with a mean annual air temperature of 9.1 °C and annual precipitation of 1005 mm, 511 mm of which falls between May and September (1981–2010)56,57. The BCSE was established as a randomized complete block design in 2008 on preexisting farmland. Prior to BCSE establishment, the field was used for grain crop and alfalfa (Medicago sativa L.) production for several decades. Between 2003 and 2007, the field received a total of ~ 300 kg P ha−1 as manure, and the southern half, which contains one of four replicate plots, received an additional 206 kg P ha−1 as inorganic fertilizer. The experimental design consists of five randomized blocks each containing one replicate plot (28 by 40 m) of 10 cropping systems (treatments) (Supplementary Fig. S1; also see Sanford et al.58). Block 5 is not included in the present study. Details on experimental design and site history are provided in Robertson and Hamilton57 and Gelfand et al.59. Leaching of P is analyzed in six of the cropping systems: (i) continuous no-till corn, (ii) switchgrass, (iii) miscanthus, (iv) a mixture of five species of native grasses, (v) a restored native prairie containing 18 plant species (Supplementary Table S1), and (vi) hybrid poplar. Agronomic management Phenological cameras and field observations indicated that the perennial herbaceous crops emerged each year between mid-April and mid-May. Corn was planted each year in early May. Herbaceous crops were harvested at the end of each growing season with the timing depending on weather: between October and November for corn and between November and December for herbaceous perennial crops. Corn stover was harvested shortly after corn grain, leaving approximately 10 cm height of stubble above the ground. The poplar was harvested only once, as the culmination of a 6-year rotation, in the winter of 2013–2014. Leaf emergence and senescence based on daily phenological images indicated the beginning and end of the poplar growing season, respectively, in each year. Application of inorganic fertilizers to the different crops followed a management approach typical for the region (Table 1). Corn was fertilized with 13 kg P ha−1 year−1 as starter fertilizer (N-P-K of 19-17-0) at the time of planting and an additional 33 kg P ha−1 year−1 was added as superphosphate in spring 2015. Corn also received N fertilizer around the time of planting and in mid-June at typical rates for the region (Table 1). No P fertilizer was applied to the perennial grassland or poplar systems (Table 1). All perennial grasses (except restored prairie) were provided 56 kg N ha−1 year−1 of N fertilizer in early summer between 2010 and 2016; an additional 77 kg N ha−1 was applied to miscanthus in 2009. Poplar was fertilized once with 157 kg N ha−1 in 2010 after the canopy had closed. Sampling of subsurface soil water and soil for P determination Subsurface soil water samples were collected beneath the root zone (1.2 m depth) using samplers installed at approximately 20 cm into the unconsolidated sand of 2Bt2 and 2E/Bt horizons (soils at the site are described in Crum and Collins54). Soil water was collected from two kinds of samplers: Prenart samplers constructed of Teflon and silica (http://www.prenart.dk/soil-water-samplers/) in replicate blocks 1 and 2 and Eijkelkamp ceramic samplers (http://www.eijkelkamp.com) in blocks 3 and 4 (Supplementary Fig. S1). The samplers were installed in 2008 at an angle using a hydraulic corer, with the sampling tubes buried underground within the plots and the sampler located about 9 m from the plot edge. There were no consistent differences in TDP concentrations between the two sampler types. Beginning in the 2009 growing season, subsurface soil water was sampled at weekly to biweekly intervals during non-frozen periods (April–November) by applying 50 kPa of vacuum to each sampler for 24 h, during which the extracted water was collected in glass bottles. Samples were filtered using different filter types (all 0.45 µm pore size) depending on the volume of leachate collected: 33-mm dia. cellulose acetate membrane filters when volumes were less than 50 mL; and 47-mm dia. Supor 450 polyethersulfone membrane filters for larger volumes. Total dissolved phosphorus (TDP) in water samples was analyzed by persulfate digestion of filtered samples to convert all phosphorus forms to soluble reactive phosphorus, followed by colorimetric analysis by long-pathlength spectrophotometry (UV-1800 Shimadzu, Japan) using the molybdate blue method60, for which the method detection limit was ~ 0.005 mg P L−1. Between 2009 and 2016, soil samples (0–25 cm depth) were collected each autumn from all plots for determination of soil test P (STP) by the Bray-1 method61, using as an extractant a dilute hydrochloric acid and ammonium fluoride solution, as is recommended for neutral to slightly acidic soils. The measured STP concentration in mg P kg−1 was converted to kg P ha−1 based on soil sampling depth and soil bulk density (mean, 1.5 g cm−3). Sampling of water samples from lakes, streams and wells for P determination In addition to chemistry of soil and subsurface soil water in the BCSE, waters from lakes, streams, and residential water supply wells were also sampled during 2009–2016 for TDP analysis using Supor 450 membrane filters and the same analytical method as for soil water. These water bodies are within 15 km of the study site, within a landscape mosaic of row crops, grasslands, deciduous forest, and wetlands, with some residential development (Supplementary Fig. S2, Supplementary Table S2). Details of land use and cover change in the vicinity of KBS are given in Hamilton et al.48, and patterns in nutrient concentrations in local surface waters are further discussed in Hamilton62. Leaching estimates, modeled drainage, and data analysis Leaching was estimated at daily time steps and summarized as total leaching on a crop-year basis, defined from the date of planting or leaf emergence in a given year to the day prior to planting or emergence in the following year. TDP concentrations (mg L−1) of subsurface soil water were linearly interpolated between sampling dates during non-freezing periods (April–November) and over non-sampling periods (December–March) based on the preceding November and subsequent April samples. Daily rates of TDP leaching (kg ha−1) were calculated by multiplying concentration (mg L−1) by drainage rates (m3 ha−1 day−1) modeled by the Systems Approach for Land Use Sustainability (SALUS) model, a crop growth model that is well calibrated for KBS soil and environmental conditions. SALUS simulates yield and environmental outcomes in response to weather, soil, management (planting dates, plant population, irrigation, N fertilizer application, and tillage), and genetics63. The SALUS water balance sub-model simulates surface runoff, saturated and unsaturated water flow, drainage, root water uptake, and evapotranspiration during growing and non-growing seasons63. The SALUS model has been used in studies of evapotranspiration48,51,64 and nutrient leaching20,65,66,67 from KBS soils, and its predictions of growing-season evapotranspiration are consistent with independent measurements based on growing-season soil water drawdown53 and evapotranspiration measured by eddy covariance68. Phosphorus leaching was assumed insignificant on days when SALUS predicted no drainage. Volume-weighted mean TDP concentrations in leachate for each crop-year and for the entire 7-year study period were calculated as the total dissolved P leaching flux (kg ha−1) divided by the total drainage (m3 ha−1). One-way ANOVA with time (crop-year) as the fixed factor was conducted to compare total annual drainage rates, P leaching rates, volume-weighted mean TDP concentrations, and maximum aboveground biomass among the cropping systems over all seven crop-years as well as with TDP concentrations from local lakes, streams, and groundwater wells. When a significant (α = 0.05) difference was detected among the groups, we used the Tukey honest significant difference (HSD) post-hoc test to make pairwise comparisons among the groups. In the case of maximum aboveground biomass, we used the Tukey–Kramer method to make pairwise comparisons among the groups because the absence of poplar data after the 2013 harvest resulted in unequal sample sizes. We also used the Tukey–Kramer method to compare the frequency distributions of TDP concentrations in all of the soil leachate samples with concentrations in lakes, streams, and groundwater wells, since each sample category had very different numbers of measurements.
Other
Individual spreadsheets in “data table_leaching_dissolved organic carbon and nitrogen.xls” 1. annual precip_drainage 2. biomass_corn, perennial grasses 3. biomass_poplar 4. annual N leaching _vol-wtd conc 5. Summary_N leached 6. annual DOC leachin_vol-wtd conc 7. growing season length 8. correlation_nh4 VS no3 9. correlations_don VS no3_doc VS don Each spreadsheet is described below along with an explanation of variates. Note that ‘nan’ indicate data are missing or not available. First row indicates header; second row indicates units 1. Spreadsheet: annual precip_drainage Description: Precipitation measured from nearby Kellogg Biological Station (KBS) Long Term Ecological Research (LTER) Weather station, over 2009-2016 study period. Data shown in Figure 1; original data source for precipitation (https://lter.kbs.msu.edu/datatables/7). Drainage estimated from SALUS crop model. Note that drainage is percolation out of the root zone (0-125 cm). Annual precipitation and drainage values shown here are calculated for growing and non-growing crop periods. Variate Description year year of the observation crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” precip_G precipitation during growing period (milliMeter) precip_NG precipitation during non-growing period (milliMeter) drainage_G drainage during growing period (milliMeter) drainage_NG drainage during non-growing period (milliMeter) 2. Spreadsheet: biomass_corn, perennial grasses Description: Maximum aboveground biomass measurements from corn, switchgrass, miscanthus, native grass and restored prairie plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2015. Data shown in Figure 2. Variate Description year year of the observation date day of the observation (mm/dd/yyyy) crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” replicate each crop has four replicated plots, R1, R2, R3 and R4 station stations (S1, S2 and S3) of samplings within the plot. For more details, refer to link (https://data.sustainability.glbrc.org/protocols/156) species plant species that are rooted within the quadrat during the time of maximum biomass harvest. See protocol for more information, refer to link (http://lter.kbs.msu.edu/datatables/36) For maize biomass, grain and whole biomass reported in the paper (weed biomass or surface litter are excluded). Surface litter biomass not included in any crops; weed biomass not included in switchgrass and miscanthus, but included in grass mixture and prairie. fraction Fraction of biomass biomass_plot biomass per plot on dry-weight basis (Grams_Per_SquareMeter) biomass_ha biomass (megaGrams_Per_Hectare) by multiplying column biomass per plot with 0.01 3. Spreadsheet: biomass_poplar Description: Maximum aboveground biomass measurements from poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2015. Data shown in Figure 2. Note that poplar biomass was estimated from crop growth curves until the poplar was harvested in the winter of 2013-14. Variate Description year year of the observation method methods of poplar biomass sampling date day of the observation (mm/dd/yyyy) replicate each crop has four replicated plots, R1, R2, R3 and R4 diameter_at_ground poplar diameter (milliMeter) at the ground diameter_at_15cm poplar diameter (milliMeter) at 15 cm height biomass_tree biomass per plot (Grams_Per_Tree) biomass_ha biomass (megaGrams_Per_Hectare) by multiplying biomass per tree with 0.01 4. Spreadsheet: annual N leaching_vol-wtd conc Description: Annual leaching rate (kiloGrams_N_Per_Hectare) and volume-weighted mean N concentrations (milliGrams_N_Per_Liter) of nitrate (no3) and dissolved organic nitrogen (don) in the leachate samples collected from corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2016. Data for nitrogen leached and volume-wtd mean N concentration shown in Figure 3a and Figure 3b, respectively. Note that ammonium (nh4) concentration were much lower and often undetectable (<0.07 milliGrams_N_Per_Liter). Also note that in 2009 and 2010 crop-years, data from some replicates are missing. Variate Description crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” crop-year year of the observation replicate each crop has four replicated plots, R1, R2, R3 and R4 no3 leached annual leaching rates of nitrate (kiloGrams_N_Per_Hectare) don leached annual leaching rates of don (kiloGrams_N_Per_Hectare) vol-wtd no3 conc. Volume-weighted mean no3 concentration (milliGrams_N_Per_Liter) vol-wtd don conc. Volume-weighted mean don concentration (milliGrams_N_Per_Liter) 5. Spreadsheet: summary_N leached Description: Summary of total amount and forms of N leached (kiloGrams_N_Per_Hectare) and the percent of applied N lost to leaching over the seven years for corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2016. Data for nitrogen amount leached shown in Figure 4a and percent of applied N lost shown in Figure 4b. Note the fraction of unleached N includes in harvest, accumulation in root biomass, soil organic matter or gaseous N emissions were not measured in the study. Variate Description crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” no3 leached annual leaching rates of nitrate (kiloGrams_N_Per_Hectare) don leached annual leaching rates of don (kiloGrams_N_Per_Hectare) N unleached N unleached (kiloGrams_N_Per_Hectare) in other sources are not studied % of N applied N lost to leaching % of N applied N lost to leaching 6. Spreadsheet: annual DOC leachin_vol-wtd conc Description: Annual leaching rate (kiloGrams_Per_Hectare) and volume-weighted mean N concentrations (milliGrams_Per_Liter) of dissolved organic carbon (DOC) in the leachate samples collected from corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2016. Data for DOC leached and volume-wtd mean DOC concentration shown in Figure 5a and Figure 5b, respectively. Note that in 2009 and 2010 crop-years, water samples were not available for DOC measurements. Variate Description crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” crop-year year of the observation replicate each crop has four replicated plots, R1, R2, R3 and R4 doc leached annual leaching rates of nitrate (kiloGrams_Per_Hectare) vol-wtd doc conc. volume-weighted mean doc concentration (milliGrams_Per_Liter) 7. Spreadsheet: growing season length Description: Growing season length (days) of corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in the Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2015. Date shown in Figure S2. Note that growing season is from the date of planting or emergence to the date of harvest (or leaf senescence in case of poplar). Variate Description crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” year year of the observation growing season length growing season length (days) 8. Spreadsheet: correlation_nh4 VS no3 Description: Correlation of ammonium (nh4+) and nitrate (no3-) concentrations (milliGrams_N_Per_Liter) in the leachate samples from corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2013-2015. Data shown in Figure S3. Note that nh4+ concentration in the leachates was very low compared to no3- and don concentration and often undetectable in three crop-years (2013-2015) when measurements are available. Variate Description crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” date date of the observation (mm/dd/yyyy) replicate each crop has four replicated plots, R1, R2, R3 and R4 nh4 conc nh4 concentration (milliGrams_N_Per_Liter) no3 conc no3 concentration (milliGrams_N_Per_Liter) 9. Spreadsheet: correlations_don VS no3_doc VS don Description: Correlations of don and nitrate concentrations (milliGrams_N_Per_Liter); and doc (milliGrams_Per_Liter) and don concentrations (milliGrams_N_Per_Liter) in the leachate samples of corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2013-2015. Data of correlation of don and nitrate concentrations shown in Figure S4 a and doc and don concentrations shown in Figure S4 b. Variate Description crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” year year of the observation don don concentration (milliGrams_N_Per_Liter) no3 no3 concentration (milliGrams_N_Per_Liter) doc doc concentration (milliGrams_Per_Liter) More>>
Free Publicly Accessible Full Text
This content will become publicly available on May 20, 2023
Busby, Sebastian U., and Holz, Andrés. Interactions Between Fire Refugia and Climate-Environment Conditions Determine Mesic Subalpine Forest Recovery After Large and Severe Wildfires. Retrieved from https://par.nsf.gov/biblio/10353226. Frontiers in Forests and Global Change 5. Web. doi:10.3389/ffgc.2022.890893.
Busby, Sebastian U., & Holz, Andrés. Interactions Between Fire Refugia and Climate-Environment Conditions Determine Mesic Subalpine Forest Recovery After Large and Severe Wildfires. Frontiers in Forests and Global Change, 5 (). Retrieved from https://par.nsf.gov/biblio/10353226. https://doi.org/10.3389/ffgc.2022.890893
Busby, Sebastian U., and Holz, Andrés.
"Interactions Between Fire Refugia and Climate-Environment Conditions Determine Mesic Subalpine Forest Recovery After Large and Severe Wildfires". Frontiers in Forests and Global Change 5 (). Country unknown/Code not available. https://doi.org/10.3389/ffgc.2022.890893.https://par.nsf.gov/biblio/10353226.
@article{osti_10353226,
place = {Country unknown/Code not available},
title = {Interactions Between Fire Refugia and Climate-Environment Conditions Determine Mesic Subalpine Forest Recovery After Large and Severe Wildfires},
url = {https://par.nsf.gov/biblio/10353226},
DOI = {10.3389/ffgc.2022.890893},
abstractNote = {Infrequent stand-replacing wildfires are characteristic of mesic and/or cool conifer forests in western North America, where forest recovery within high-severity burn patch interiors can be slow, yet successful over long temporal periods (decades to centuries). Increasing fire frequency and high-severity burn patch size, under a warming climate, however, may challenge post-fire forest recovery, promoting landscape-level shifts in forest structure, composition, and distribution of non-forest patches. Crucial to a delay and/or impediment to this shift, fire refugia (i.e., remnant seed sources) may determine forest recovery trajectories and potential forest state-transitions. To examine how fire refugia attributes (i.e. extent, composition, and structure) interact with local climate and environmental conditions to determine post-fire forest recovery responses, we developed fine-grain maps of fire refugia via remote sensing and conducted field-based assessment of post-fire conifer tree establishment largely originating (i.e., dispersed) from fire refugium in the Central Cascade Range of the Pacific Northwest United States. We found that limitations on seed availability, represented by the distance 2 -weighted density (D 2 WD) of fine-grain refugia extent, largely explained post-fire tree establishment responses within our relatively mesic and cool subalpine study sites. Interactions between seed availability, climate, and environmental conditions indicated that the structural attributes of refugia (e.g., tree height) and site abiotic/biotic environmental controls (e.g., climate water deficit, canopy cover, and coarse woody debris cover) interplayed to constrain or enhance species-specific tree establishment responses. Importantly, these interactions illustrate that when seed availability is critically low for a given area, climate-environment conditions may strongly determine whether forests recover following fire(s). Toward modelling and predicting tree establishment responses and potential forest state-transitions after large stand-replacing fires(s), our study demonstrates the importance of accurately quantifying seed availability via the fine-grain extent, configuration, and attributes of remnant seed source legacies.},
journal = {Frontiers in Forests and Global Change},
volume = {5},
author = {Busby, Sebastian U. and Holz, Andrés},
}