Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 19, 2023
-
Free, publicly-accessible full text available June 19, 2023
-
Free, publicly-accessible full text available June 14, 2023
-
Infrequent stand-replacing wildfires are characteristic of mesic and/or cool conifer forests in western North America, where forest recovery within high-severity burn patch interiors can be slow, yet successful over long temporal periods (decades to centuries). Increasing fire frequency and high-severity burn patch size, under a warming climate, however, may challenge post-fire forest recovery, promoting landscape-level shifts in forest structure, composition, and distribution of non-forest patches. Crucial to a delay and/or impediment to this shift, fire refugia (i.e., remnant seed sources) may determine forest recovery trajectories and potential forest state-transitions. To examine how fire refugia attributes (i.e. extent, composition, and structure) interact with local climate and environmental conditions to determine post-fire forest recovery responses, we developed fine-grain maps of fire refugia via remote sensing and conducted field-based assessment of post-fire conifer tree establishment largely originating (i.e., dispersed) from fire refugium in the Central Cascade Range of the Pacific Northwest United States. We found that limitations on seed availability, represented by the distance 2 -weighted density (D 2 WD) of fine-grain refugia extent, largely explained post-fire tree establishment responses within our relatively mesic and cool subalpine study sites. Interactions between seed availability, climate, and environmental conditions indicated that the structural attributes ofmore »
-
Nearly 0.8 million hectares of land were burned in the North American Pacific Northwest (PNW) over two weeks under record-breaking fuel aridity and winds during the extraordinary 2020 fire season, representing a rare example of megafires in forests west of the Cascade Mountains. We quantified the relative influence of weather, vegetation, and topography on patterns of high burn severity (>75% tree mortality) among five synchronous megafires in the western Cascade Mountains. Despite the conventional wisdom in climate-limited fire regimes that regional drivers (e.g., extreme aridity, and synoptic winds) overwhelm local controls on vegetation mortality patterns (e.g., vegetation structure and topography), we hypothesized that local controls remain important influences on burn severity patterns in these rugged forested landscapes. To study these influences, we developed remotely sensed fire extent and burn severity maps for two distinct weather periods, thereby isolating the effect of extreme east winds on drivers of burn severity. Our results confirm that wind was the major driver of the 2020 megafires, but also that both vegetation structure and topography significantly affect burn severity patterns even under extreme fuel aridity and winds. Early-seral forests primarily concentrated on private lands, burned more severely than their older and taller counterparts, over themore »
-
The unprecedented size of the 2017 wildfires that burned nearly 600,000 hectares of central Chile highlight a need to better understand the climatic conditions under which large fires develop. Here we evaluate synoptic atmospheric conditions at the surface and free troposphere associated with anomalously high (active) versus low (inactive) months of area burned in south-central Chile (ca. 32–41° S) from the Chilean Forest Service (CONAF) record of area burned from 1984–2018. Active fire months are correlated with warm surface temperatures, dry conditions, and the presence of a circumpolar assemblage of high-pressure systems located ca. 40°–60° S. Additionally, warm surface temperatures associated with active fire months are linked to reduced strength of cool, onshore westerly winds and an increase in warm, downslope Andean Cordillera easterly winds. Episodic warm downslope winds and easterly wind anomalies superimposed on long-term warming and drying trends will continue to create conditions that promote large fires in south-central Chile. Identifying the mechanisms responsible for easterly wind anomalies and determining whether this trend is strengthening due to synoptic-scale climatic changes such as the poleward shift in Southern Hemisphere westerly winds will be critical for anticipating future large fire activity in south-central Chile.
-
Burn severity, which can be reliably estimated by validated spectral indices, is a key element for understanding ecosystem dynamics and informing management strategies. However, in North Patagonian forests, where wildfires are a major disturbance agent, studies aimed at the field validation of spectral indices of burn severity are scarce. The aim of this work was to develop a field validated methodology for burn-severity mapping by studying two large fires that burned in the summer of 2013–2014 in forests of Araucaria araucana and other tree species. We explored the relation between widely used spectral indices and a field burn-severity index, and we evaluated index performance by examining index sensitivity in discriminating burn-severity classes in different vegetation types. For those indices that proved to be suitable, we adjusted the class thresholds and constructed confusion matrices to assess their accuracy. Burn severity maps of the studied fires were generated using the two most accurate methods and were compared to evaluate their level of agreement. Our results confirm that reliable burn severity estimates can be derived from spectral indices for these forests. Two severity indices, the delta normalized burn ratio (dNBR) and delta normalized difference vegetation index (dNDVI), were highly related to the fire-inducedmore »